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Abstract

This paper examines the non-parametric identifiability of production function when 
production functions are heterogeneous across firms beyond Hicks-neutral technology 
terms. Using a finite mixture specification to capture unobserved heterogeneity in pro-

duction technology, we show that the production function for each unobserved type 
is non-parametrically identified under regularity conditions. We estimate a random 
coefficients production function using the panel data of Japanese manufacturing plants 
and compare it with the estimate of the production function with fixed coefficients esti-

mated by the method of Gandhi, Navarro, and Rivers (2020). Our estimates for random 
coefficients production function suggest that there exists substantial heterogeneity in 
production function coefficients beyond Hicks neutral term across firms within narrowly 
defined industries.
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1 Introduction

Estimation of production function is one of the most important topics in empirical eco-

nomics. Understanding how the input is related to the output is a fundamental issue in

empirical industrial organization (see, for example, Ackerberg, Benkard, Berry, and Pakes,

2007). In empirical trade and macroeconomics, researchers are often interested in estimating

production function to obtain a measure of total factor productivity to examine the effect

of trade policy on productivity and to analyze the role of resource allocation on aggregate

productivity (e.g., Pavcnik, 2002; Kasahara and Rodrigue, 2008; Hsieh and Klenow, 2009).

As first discussed by Marschak and Andrews (1944), the ordinary least square estimates

of production function suffer from simultaneity bias because inputs are correlated with error

terms when a firm makes an input decision based on their productivity level (Griliches and

Mairesse, 1998). Under the assumption that error terms could be decomposed into per-

manent and idiosyncratic components, a fixed-effects estimator may be used but such an

assumption could be violated in practice, and the coefficient of inputs that are persistent

over time could be severely biased downward due to measurement errors (Griliches and Haus-

man, 1986). More recent literature attempts to address the simultaneity issue by employing

dynamic panel approach (Arellano and Bond, 1991; Blundell and Bond, 1998; Blundell and

Bond, 2000) or developing proxy variable approach (Olley and Pakes, 1996 (OP, hereafter);

Levinsohn and Petrin, 2003 (LP, hereafter); Ackerberg, Caves, and Frazer, 2015, (ACF,

hereafter); Wooldridge, 2009), which are now widely used in empirical applications.

Despite their popularity, however, potential identification issues of the proxy variable

approach have been pointed out in the literature. Bond and Sderbom (2005) and ACF

discuss identification issues due to collinearity under two flexible inputs (i.e., material and

labor) in Cobb-Douglas specification. Gandhi, Navarro, and Rivers (2020, GNR hereafter)

argue that, if the firm’s decision follows a Markovian strategy, then the conditional moment

restriction implied by proxy variable approach may not provide enough restriction for non-

parametrically identifying gross production function. GNR exploit the first order condition

with respect to flexible input under profit maximization and establish the identification

of production function without making any functional form assumption. Based on their

identification strategy, GNR proposes an estimation procedure that does not suffer from

simultaneity bias.

This paper extends the identification result of GNR based on the first-order condition

to the case where production functions are heterogeneous across firms beyond Hicks-neutral

technology terms. We consider a finite mixture specification in which there are J distinct

time-varying production technologies and each firm belongs to one of J types. Econome-
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tricians do not observe the type of firms. Without making any functional form assumption

on each type of production technology, we establish nonparametric identification of J dis-

tinct production functions and a population proportion of each type under the reasonable

assumption.

Recent literature includes studies examining the identification of extended production

functions (e.g. Li and Sasaki, 2017; Demirer, 2020; Chen, Igami, Sawada, and Xiao, 2021;

Doty, 2022). However, since our extension differs from those existing models, our nonpara-

metric identification result is an important contribution to this literature. Our identification

result on production function with unobserved heterogeneity is also useful in practice as the

random coefficient models of production functions are increasingly popular in empirical anal-

ysis (e.g., Mairesse and Griliches, 1990; Van Biesebroeck, 2003; Doraszelski and Jaumandreu,

2018; Balat, Brambilla, and Sasaki, 2019).

In estimation, we consider a random coefficient specification for production function and

propose two different estimation procedures. The first procedure follows our two-stage iden-

tification proof and directly maximizes the log-likelihood function of a finite mixture model

of production functions under parametric assumptions, where the EM algorithm can be used

to facilitate the computational complication of maximizing the log-likelihood function of the

finite mixture model. In the second procedure, we first estimate the partial likelihood func-

tion under the normality assumption and use the posterior distribution of type probabilities

to classify each firm observation into one of the J types, generating J data sets; using each

of J data sets, we estimate the rest of the type-specific parameters. The second proce-

dure is computationally much simpler and requires fewer auxiliary parametric assumptions

than the first one although the second procedure could lead to a biased estimator due to

misclassification of types when T is small.

We estimate a random coefficients production function using the panel data of Japanese

manufacturing plants between 1986 and 2010 and compare the results with those from the

original GNR specification without unobserved heterogeneity. Our estimates suggest that

there exists substantial heterogeneity in production function coefficients beyond Hicks neu-

tral term. Ignoring unobserved heterogeneity may lead to substantial biases in the measure-

ment of productivity growth. To examine this issue, we take a specification with unobserved

heterogeneity as the true model and compute the bias in the measurement of productivity

growth when we use a misspecified homogenous model. The results suggest that ignoring

unobserved heterogeneity could result in serious bias in the estimated productivity growth

and the bias is likely to have a systematic pattern depending on the heterogeneous parameter

estimates. We also find that the correlation between estimated productivity and investment
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is different across different types of firms, where the correlation is stronger among a type of

firms with capital-intensive production technology than other types of firms.

2 Evidence for unobserved heterogeneity

To motivate the necessity of considering production functions with unobserved heterogeneity,

we first present stylized facts that production functions are heterogeneous beyond Hicks-

neutral technology term using the panel data of Japanese manufacturing plants from 1986

to 2010. Section 6.1 discusses the details of our data.

To fix the idea, consider a plant with the Cobb-Douglas production technology:

log Yit = β0 + βim logMit + βi` logLit + βik logKit + ωit,

where Yit is output, Mit, Lit, and Kit are intermediate input, labor, and capital, and ωit is

the total factor productivity (TFP) that follows the first order Markov process. We assume

that firms take their output and input prices given and that intermediate input and labor

are flexibly chosen after ωit is fully observed. Then, a plant’s profit maximization implies:

βim =
PM,tMit

PY,tYit
and

βim
βim + βi`

=
PM,tMit

PM,tMit +WtLit
, (1)

where PY,t, PM,t, and Wt are the prices of output, intermediate input, and labor.

In most existing empirical work, production function is estimated under the assumption

that the coefficients βim, βi`, and βik do not vary across plants. This assumption can be tested

in view of (1) by examining whether the intermediate input share,
PM,tMit

PY,tYit
, and the ratio

of intermediate cost to the sum of intermediate and labor costs,
PM,tMit

PM,tMit+WtLit
, are constant

across plants.

Figures 1a and 1b present the histogram of the plant-level average of the intermediate

input share,
PM,tMit

PY,tYit
, over the maximum 25 years across all plants that belong to the concrete

products and electric audio equipment industries. Both figures show a large variation in

intermediate shares. In particular, the dispersion in the electric audio equipment industry is

very large with the 90th to the 10th difference given by 0.63, indicating that the elasticities

of output with respect to intermediate input dramatically differ across firms.

Figures 2a and 2b show the histogram of the plant-level average of the material cost

to variable costs,
PM,tMit

PM,tMit+WtLit
, for the concrete products and electric audio equipment in-

dustries, respectively. The large variation in the cost shares suggests that heterogeneous
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markups are not the main reason for the variation in the intermediate input share shown in

Figures 1a and 1b.

Comparing the degrees of dispersions in cost shares within 2-digit industry classification

against that within 3 or 4-digit industry classification, we may examine how classifying

industries at a finer level helps control for heterogeneity in production technology.

Figures 3a, 3b, and 3c compare the histogram of the plant-level average of the material

cost to variable costs for ceramics and clay (2 digit), cement product (3 digit) and concrete

products (4 digit). These figures indicate that the dispersion somewhat decreases from 2

digit to 4 digit, but the difference is not large. Figures 4a, 4b, and 4c similarly shows that the

dispersion of material shares does not decline much by moving from electric parts, device,

and circuit (2 digit) to electric device (3 digit) and then to electric audio equipment (4 digit),

Table 1 reports the difference between the 90th percentile and 10th percentile for the

plant-level averages of
PM,tMit

PY,tYit
and

PM,tMit

PM,tMit+WtLit
for 2, 3, and 4 digit industry classifications.

For concrete products, the 90th-10th percentile difference in intermediate input shares de-

creases from 0.38 (2 digit) to 0.28 (4 digit), while the 90th-10th percentile difference changes

only slightly from 2 digit to 4 digit for the electric audio equipment industry, ranging from

0.61 to 0.62. The patterns are similar for the plant-level average of the cost shares. These

patterns hold across all industries; Table 2 reports the averages of the 90th-10th differences

for all industries at 2-digit, 3-digit, and 4-digit classifications and shows that the dispersion

measure decreases only slightly by considering a finer industry classification from 2 digit to 4

digit. Overall, this suggests that using the data set at a finer industry classification may not

be a solution to control for production technology heterogeneity; furthermore, information

on industry classifications finer than 4-digit classification is often not available in the data

set.

Implications in (1) only hold under the Cobb-Douglass production function. For a more

general production function, the elasticities of output with respect to inputs depend on the

level of material, labor, and capital inputs even in the absence of heterogeneity in production

technology. Therefore, we also examine if the ratio of intermediate input cost to output value

is similar across firms after controlling for differences in capital, labor, and intermediate

inputs. Specifically, we first regress
PM,tMit

PY,tYit
on the second order polynomials of the log of

materials, the number of workers, and capital to obtain the residuals, denoted by eit. Then,

we compute the plant-level average ξ̂i := T−1
∑T

t=1 eit to measure production technology

heterogeneity conditioning on inputs.

The 90th to 10th percentile differences in ξ̂i for the concrete industry and electric audio

equipment industry are 0.27 and 0.29, respectively, indicating a substantial variation in
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Figure 1: Histogram of
(
PM,tMit

PY,tYit
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Figure 2: Histogram of
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production technology after controlling for observable inputs.

Table 1: The 90th-10th percentile ratio of Intermediate and Labor Cost Shares for Concrete
Product and Electric Audio

No. of 90-10 diff 90-10 diff in

Industry Code : Name Obs. in
(
PMit

PYit

)
i

(
PMit

PMit+WLit

)
i

22: Ceramics and Clay 53,042 0.38 0.38
222: Cement Product 22,834 0.35 0.32
2223: Concrete Product 14,463 0.28 0.27
28: Electric Parts/Devise/Circuit 30,814 0.61 0.66
281: Electric Device 19,901 0.62 0.66
2814: Electric Audio 11,325 0.62 0.67
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Figure 3: Histogram of
(
PM,tMit

PY,tYit
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Figure 4: Histogram of
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Table 2: The 90th-10th percentile ratio of Intermediate and Labor Cost Shares

Industry No. of Ave. 90-10 diff Ave. 90-10 diff Ave. No.

Classifications Industries in
(
PMit

PYit

)
i

in
(

PMit

PMit+WLit

)
i

of Obs.

2-digit 24 0.46 0.44 49,512
3-digit 149 0.42 0.39 7,975
4-digit 279 0.38 0.35 2,481

3 The Model

Denote output, capital, intermediate inputs, labour input in effective unit of labour, and

total wage bills, denoted by (Yit, Kit,Mit, Lit, Bit) ∈ Y ×K×M×L×B, respectively, where

Y , K,M, L, and B are the supports of corresponding variables. We collect the three inputs

(capital, intermediate, and labour) into a vector as Xit := (Kit,Mit, Lit)
′ ∈ X := K×M×L.

We consider a possibility that firms are different in production technology beyond Hick’s

neutral productivity shock. Specifically, we use a finite mixture specification to capture per-
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manent unobserved heterogeneity in firm’s production technology. Define the latent random

variable Di ∈ {1, 2, ..., J} that represents the type of firm i so that Di = j when firm i

has the j-th type of technology. In the following, the superscript j indicates that functions

are specific to type j while the subscript t indicates that functions are specific to period

t. In particular, for a random variable Zit, we denote the probability distribution and the

expectation conditional on Di = j as P j(Zit) := P (Zit|Di = j) and Ej[Zit] := E[Zit|Di = j].

We assume that both Mit and Lit are flexibly chosen after observing serially correlated

productivity shock ωit. On the other hand, Kit is predetermined at the end of the last period.

Denote the information available to a firm for making decisions on Mit and Lit by Iit.

Assumption 1. (a) Each firm belongs to one of the J types, where the probability of be-

longing to type j is given by πj = P(Di = j), and J is known. A firm knows its type, i.e.,

Di ∈ Iit. (b) For the j-th type of production technology at time t, the output is related to

inputs as

Yit = eωit+εitF j
t (Xit). (2)

(c) The total wage bills is related to the labour input in effective unit as

Bit = evit+ζitPL,tLit, (3)

where PL,t is the market wage.

Assumption 2. (a) (vit, ωit) ∈ Iit. For the j-th type, ωit follows an exogenous first order

stationary Markov process given by

ωit = hj(ωit−1) + ηit (4)

where, conditional on Iit−1, ηit and vit are mean-zero i.i.d. random variables on R with the

probability density functions gjη(·) and gjv(·), respectively. Furthermore, the unconditional

expectation of ωit is zero, i.e., Ej[ωit] = 0. (b) (εit, ζit) 6∈ Iit so that (εit, ζit) is not known

when Lit and Mit are chosen. For the j-th type, conditional on Iit, (εit, ζit) is a mean-zero

i.i.d. random variable on R2 with the probability density function gjεζ,t(·).

Assumption 3. (a) Kit ∈ Iit but Kit 6∈ Iit−1. (b) the conditional distribution of Kit

given It−1 is type specific and only depends on Kit−1 and ωit−1, i.e., Pt(Kit|It−1, Di = j) =

P j
t (Kit|Kit−1, ωit−1).

Assumption 4. (a) Mit and Lit are chosen at time t by maximizing the expected profit
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conditional on Iit as

(Mit, Lit) = (Mj
t(Kit, ωit, vit),Ljt(Kit, ωit, vit))

:= argmax
(M,L)∈M×L

PY,tE
j[eεit|Iit]eωitF j

t (Kit, L,M)− PM,tM − Ej[eζit |Iit]evitPL,tL,

where (Mj
t(Kit, ωit, vit),Ljt(Kit, ωit, vit)) is a type-specific deterministic function of (Kit, ωit, vit).

(b) For any given Kit ∈ K, (Mj
t(Kit, ωit, vit),Ljt(Kit, ωit, vit)) is invertible with respect to

(ωit, vit) with probability one.

Assumption 5. (a) A firm is a price taker. (b) The intermediate input price PM,t, the output

price PY,t, and the market wage PL,t at time t are common across firms. (c) (PM,t, PY,t, PL,t) ∈
Iit and (PM,t, PY,t) is known to an econometrician.

Assumption 6. (a) The labour input in effective unit of labour Lit is not directly observable.

(b) Lit is related to the number of workers, denoted by L̃it, as

Lit = eψ
j
t L̃it

with
∑J

j=1 π
jeψ

j
t = 1.

In Assumption 1(b), as indicated by the subscript t in F j
t (·), type-specific production

function could be different across periods because of type-specific aggregate shocks or type-

specific biased technological changes. In Assumption 1(c), we relate the labor input in an

effective unit of labor to the total wage bills.

Assumption 2 assume that (ωit, vit) is known when Lit and Mit are chosen while (εit, ζit)

is not known when Lit and Mit are chosen. The presence of wage shock vit provides an

additional source of variation for Lit beyond ωit and Kit; consequently, Lit and Mit are not

collinear, preventing the identification problem discussed by Bond and Sderbom (2005) and

ACF.

Assumption 3(a) assumes that Kit is determined at time t− 1 so that (ηit, ωit, vit) is not

known when Kit is chosen. Assumption 3(b) can be justified by explicitly considering the

dynamic model of investment decisions. Assumption 4(b) holds when there exists one-to-one

relationship between (Mit, Lit) and (ωit, vit) conditional on the value of Kit, and is satisfied

in the case of Cobb-Douglas function.

Under Assumption 5(b), the intermediate input price PM,t cannot be used for instrument-

ing Mit; when intermediate prices are exogenous and heterogenous across firms, production

function could be identified using the intermediate input prices as instruments (see Doraszel-

ski and Jaumandreu, 2014). In Assumption 5(c), we may alternatively assume that a firm

9

ESRI Discussion Paper Series No.368 
"Identification and Estimation of Production Function with Unobserved Heterogeneity"



is subject to idiosyncratic price shock ξit such that, for example, PY,it = exp(ξit)PY,t with

ξit 6∈ Iit, then ξit plays the similar role to εit. We may assume that (PM,t, PY,t) is not known

to econometrician by treating PM,t/PY,t as parameters to be estimated; in such a case, we

may identify the production function up to scale.

As stated in Assumption 6(a), we assume that Lit is not directly observable because of the

firm-level differences in both labor quality and working hours. Assumption 6(b) imposes a

specific structure on how the labor input is related to the observed number of workers, where

ψjt represents worker quality and working hours which are specific type j, and the variation in

labor inputs within each type is fully captured by the number of workers L̃it. The assumption

that
∑J

j=1 π
jeψ

j
t = 1 is normalization. The assumption of flexibly chosen labor input (i.e.,

Assumption 4) is more plausible when we don’t impose Assumption 6(b) because working

hours are more flexibly adjustable than the number of workers and Assumption 6(b) does

not allow working hours to be different across firms within each type.1 For this reason, we

provide two different identification results: the one with Assumption 6(b) and the other

without Assumption 6(b).

Under Assumptions 1-6, we have Iit = {Di, ωit, vit, Kit, PM,t, PY,t, PL,t, Vit−1, Vit−2, ...},
where Vit = {ζit, εit, ωit, vit, Kit, PM,t, PY,t, PL,t}.

Let gε,t(ε) :=
∫
gεζ,t(ε, ζ)dζ and gζ,t(ζ) :=

∫
gεζ,t(ε, ζ)dε. Under Assumptions 1, 2, 3(a),

4(a), and 5, the first order conditions with respect to Mit and Lit give

PY,tF
j
M,t(Xit)E

j
t (e

ε)eωit = PM,t, PY,tF
j
L,t(Xit)E

j
t (e

ε)eωit = Ej
t (e

ζ)evitPL,t, (5)

where F j
M,t(X) :=

∂F jt (X)

∂M
, F j

L,t(X) :=
∂F jt (X)

∂L
, Ej

t [e
ε] :=

∫
eεgjε,t(ε)dε, and Ej

t [e
ζ ] :=

∫
eζgjζ,t(ζ)dζ.

Equations (2), (3), and (5) give a system of equations

lnYit = lnF j
t (Xit) + ωit + εit, lnSmit = ln

(
Gj
M,t(Xit)E

j
t [e

ε]
)
− εit,

lnS`it − lnSmit = ln

(
Gj
L,t(Xit)

Gj
M,t(Xit)E

j
t [e

ζ ]

)
+ ζit, lnPM,tMit = ln

(
PL,tLitG

j
M,t(Xit)E

j
t [e

ζ ]

Gj
L,t(Xit)

)
+ vit,

(6)

where

Smit :=
PM,tMit

PY,tYit
, S`it :=

Bit

PY,tYit
, Gj

M,t(Xit) :=
F j
M,t(Xit)Mit

F j
t (Xit)

, and Gj
L,t(Xit) :=

F j
L,t(Xit)Lit

F j
t (Xit)

.

In place of Assumption 5, we may alternatively consider the case where firms produce

1See, for example, Miyamoto et al. (2017) for the evidence that working hours are adjusted more flexibly
than the number of workers over the business cycle in Japan.
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differentiated products and face a demand function with constant price elasticity as follows.

Assumption 7 (Constant Demand Elasticity). (a) A firm faces an inverse demand function

with constant elasticity given by PY,it = Y
−1/σjY
it eε

j
d,it, where εd,it /∈ Iit is an i.i.d. ex-post shock

that is not known when Mit is chosen at time t. (b) A firm is a price taker for intermediate

and labour inputs and the intermediate price and the market wage at time t, PM,t and PL,t,

are common across firms. (c) PY,it and Yit are not separately observed in the data.

Under Assumption 6, the “revenue” production function is given by PY,itYit = F
j

t(Xit)e
ωit+εit ,

where F
j

t(Xit) := [F j
t (Xit)]

σ
j
Y

−1

σ
j
Y , ωit :=

σjY −1

σjY
ωit, ζ it :=

σjY −1

σjY
ζit, and εit := εdit+

σjY −1

σjY
εit. Then,

in place of (6), we have

lnPY,itYit = lnF
j

t(Xit) + ωit + εit, lnSmit = ln
(
G
j

M,t(Xit)
)

+ ln
(
Ej
t [e

ε]
)
− εit,

lnS`it − lnSmit = ln

(
G
j

L,t(Xit)

G
j

M,t(Xit)E
j
t [e

ζ ]

)
+ ζ it, lnPM,tMit = ln

(
PL,tLitG

j

M,t(Xit)E
j
t [e

ζ ]

G
j

L,t(Xit)

)
+ vit,

(7)

where G
j

M,t(Xit) :=
F
j
M,t(Xit)Mit

F
j
t (Xit)

and G
j

L,t(Xit) :=
F
j
L,t(Xit)Lit

F
j
t (Xit)

. When PY,it and Yit are not

separately observed in the data, the observable implication of (7) are the same as that of (6).

In particular, we cannot separately identify the parameter σjY and the production function

F j
t . Therefore, we focus on the identification analysis under Assumption 5 although we

should be careful in interpreting the empirical result because the unobserved heterogeneity

in revenue production function could partly reflect in difference in demand elasticity.

4 Nonparametric identification

Assume that we have panel data of firms i = 1, ..., N over periods t = 1, ..., T for out-

put, capital, intermediate inputs, the number of workers, and the total wage bills, de-

noted by (Yit, Bit, Kit,Mit, L̃it) ∈ Y × B × K ×M × L̃, respectively. For brevity, define

X̃ := (Kit,Mit, L̃it) ∈ X̃ := K ×M× L̃. Each firm’s observation {Yit, Bit, X̃it}Tt=1 is ran-

domly sampled from a population distribution P ({Yit, Bit, X̃it}Tt=1).

We first establish the non-parametric identification of production functions with unob-

served heterogeneity under Assumptions 1-6. For notational brevity, we drop the subscript

i in this section and denote St = (Smt , S
`
t ). Note that, by definition of S`t and Smt , we have

Yt =
PM,tMt

Smt PY,t
and Bt =

S`tPM,tMt

Smt
so that the value of Yt and Bt is known given (St, X̃t) under As-

sumption 5. Therefore, we consider {St, X̃t}Tt=1 as our data. Let Zt := (St, X̃t) ∈ Z := S×X̃ .
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We first establish the nonparametric identification of model structures when J = 1 as

follows.

Proposition 1. Suppose that J = 1 and Assumption 1-6 holds with T ≥ 3. Then, (a)

θ1 := {gv(·), gεζ,t(·), GM,t(·), GL,t(·), PL,t}Tt=1 is uniquely determined from P({Zt}Tt=1). (b)

θ2 := {{Ft(·)}Tt=2, h(·), gη(·)} is uniquely determined from P({Zt}Tt=1) and θ1.

Remark 1. Proposition 1 extends the identification result of GNR to the setting where Lit

is contemporaneously determined rather than predetermined.

When J ≥ 2, the distribution of {Zt}Tt=1 follows an J-term mixture distribution

P({Zt}Tt=1) =
J∑
j=1

πjPj
1(Z1)

T∏
t=2

Pj
t(Zt|{Zt−s}t−1

s=1). (8)

Proposition 2. Suppose that Assumptions 1-6 hold. Then, the distribution of {Zt}Tt=1 de-

fined in (8) can be written as

P({Zt}Tt=1) =
J∑
j=1

πj

(
Pj

1(S1|X̃1)
T∏
t=2

Pj
t(St|X̃t)

)
×

(
Pj

1(X̃1)
T∏
t=2

Pj
t(X̃t|X̃t−1)

)
. (9)

Therefore, {Zt}Tt=1 follows a first order Markov process within subpopulation specified by

type. The result of Proposition 2 allows us to establish the nonparametric identification of

{πj, {Pj
t(Zt)}Tt=1}Jj=1 by extending the argument in Kasahara and Shimotsu (2009) and Hu

and Shum (2012).

Assumption 8. Let Wt be the support of Wt. For every (z2, z3) ∈ Z2 × Z3, there exists

(z̄2, z̄3) ∈ Z2 × Z3, (a1, ..., aJ) ∈ ZJ1 and (b1, ..., bJ−1) ∈ ZJ−1
4 such that (a) Lz3, Lz̄3, L̄z2,

and L̄z̄2 defined in (34) are nonsingular, (b) P j(Z3 = z3|Z2 = z̄2) 6= 0 and P j(Z3 = z̄3|Z2 =

z2) 6= 0 hold for j = 1, ..., J , and (c) all the diagonal elements of Dz2,z̄2,z3,z̄3 defined in (35)

take distinct values.

Proposition 3. Suppose that Assumptions 1-5, and 8 hold and T ≥ 4. Then,

{πj,Pj
1(Z1), {Pj

t(Zt|Zt−1)}Tt=2}Jj=1 is uniquely determined from P({Zt}Tt=1).

Remark 2. Under the additional assumption of the stationarity, i.e., Pj
t(Zt|Zt−1) = Pj(Zt|Zt−1)

for t = 2, ..., T , Kasahara and Shimotsu (2009) establishes the nonparametric identification

of the model (9) when T = 6 while Hu and Shum (2013) shows that T = 4 suffices for

identification.
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Remark 3. Considering serially correlated continuous unobserved variables {X∗t }, Hu and

Shum (2013) analyze the nonparametric identification of the model

P({Zt}Tt=1) =

∫
P1(Z1, X

∗
1 )

T∏
t=2

Pt(Zt, X
∗
t |Zt−1, X

∗
t−1)d({X∗t }Tt=1).

Given the panel data {Zt}Tt=1 with T = 5, Theorem 1 and Corollary 1 of Hu and Shum (2013)

state that, under their Assumptions 1-4, P3(Z3, X
∗
3 ), P4(Z4, X

∗
4 |Z3, X

∗
3 ), and P5(Z5, X

∗
5 |Z4, X

∗
4 )

are non-parametrically identified but the identification of P1(Z1, X
∗
1 ), P2(Z2, X

∗
2 |Z1, X

∗
1 ), and

P3(Z3, X
∗
3 |Z2, X

∗
2 ) remains unresolved. Our Proposition 3 shows that, for a model in which

unobserved heterogeneity is discrete and finite, we can nonparametrically identify the type-

specific distribution of {Zt}Tt=1 including the first two periods of the data from T = 4 periods

of panel data without imposing stationarity.

Remark 4. Assumption 8 assumes the rank condition of matrices Lz3, Lz̄3, L̄z2, and L̄z̄2 de-

fined in (34), of which elements are constructed by evaluating Pj
4(Z4|Z3) and πjPj

2(Z2|Z1)Pj
1(Z1)

at different points. These conditions are similar to the assumption stated in Proposition 1 of

Kasahara and Shimotsu (2009). Please refer to Remark 2 of Kasahara and Shimotsu (2009)

for their interpretations. One needs to find only one pair of values (Z̄2, Z̄3) ∈ Z2 × Z3 and

one set of J − 1 and J points of Z1 and Z4 to construct nonsingular Lz3, Lz̄3, L̄z2, and

L̄z̄2 for each (Z2, Z3) ∈ Z2 × Z3 and these rank conditions are not stringent when Wt has

continuous support. The identification of P j
4 (Z4|Z3 = Z3) and πjP j

2 (Z2 = Z2|Z1)P j
1 (Z1) at

all other points of Z4 and Z1, respectively, follows without any further requirement on the

rank condition.

Once the type-specific distribution of {Zt} is identified, we may apply the argument in

the proof of Proposition 1 to prove the nonparametric identification for each type’s model

structure.

Proposition 4. Suppose that Assumptions 1-6, and 8 hold and T ≥ 4. Then, (a) θ1 :=

{πj, gjv(·), {g
j
εζ,t(·), , G

j
M,t(·), G

j
L,t(·), PL,t, ψ

j
t}Tt=1}Jj=1 is uniquely determined from P({Zt}Tt=1).

(b) θ2 := {{{F j
t (·)}Tt=1}Jj=2, h

j(·), gjη(·)} is uniquely determined from P({Zt}Tt=1) and θ1.

Therefore, type-specific production functions as well as the distribution of unobserved

variables can be non-parametrically identified. In estimation, we focus our attention to the

case where type-specific function is given by Cobb-Douglas production function with random

coefficients.
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Example 1 (Random Coefficients Model). Consider a Cobb-Douglas production function

with time-varying random coefficients:

f̃ jt (x̃t) = βj0,t + βjk,tkt + βj`,t(ψ
j
t + ˜̀

t) + βjm,tmt, (10)

where f̃ jt (x̃t) := lnF j
t (Kt, e

ψjt L̃t,Mt) while the intermediate and labor cost share equations

are given by

smt = ln(βjm,t) + lnEj
t [e

ε]− εt, s`t − smt = ln(βj`,t/β
j
m,t)− ln

(
Ej
t [e

ζ ]
)

+ ζt,

mit − ˜̀
it = ln(PL,t/PM,t) + ln

(
βjm,t/β

j
`,t

)
+ ln

(
Ej
t [e

ζ ]
)

+ ψjt + vit,

Under Assumptions 1-6, and 8, {πj, hj(·), gjη(·), gv(·), {β
j
`,t, β

j
m,t, g

j
ε,t(·), g

j
ζ,t(·), ψ

j
t}4
t=1, {β

j
0,t, β

j
k,t}4

t=2}
for j = 1, ..., J is nonparametrically identified from the panel data {St, Xt}4

t=1.

In the appendix, we discuss the conditions under which Assumption 8 holds when the

production function is Cobb-Douglas. The following corollary shows that type-specific dis-

tribution of St can be identified from the joint distribution of {St}Tt=1 for Cobb-Douglas

specification.

Corollary 1. Suppose that Assumptions 1-5, and 8 hold and T ≥ 4. Suppose that production

function is Cobb-Douglas given by (10). Then, {πj, {Pj
t(St)}Tt=1}Jj=1 is uniquely determined

from P({St}Tt=1).

5 Estimation of production function with random co-

efficients

We consider a random sample of N independent observations {{Yit, Bit, X̃it}Tt=1}Ni=1 from the

J-component mixture model
∑J

j=1 π
jPj

t({Yit, Bit, X̃it}Tt=1) =
∑J

j=1 π
jPj

t({Sit, X̃it}Tt=1).

We impose the following parametric assumptions for estimation.

Assumption 9. (a) Assumption 1 holds with

Yit = F j
t (Kit, e

ψjt L̃it,Mit)e
ωit+εit with F j

t (Kit, e
ψjt L̃it,Mit) = exp((βj0,t+β

j
`ψ

j
t )+β

j
kkit+β

j
`
˜̀
it+β

j
mmit).

(11)

(b) Assumption 2 holds with

(
εit

ζit

)∣∣∣∣∣Di = j
d∼ N

((
0

0

)
,

(
(σjε )

2 ρjεζσ
j
εσ

j
ζ

ρjεζσ
j
εσ

j
ζ (σjζ)

2

))
.
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In (11), because logLit = ψjt + ˜̀
it, the intercept term contains both βj0,t and βj`ψ

j
t , where

the latter captures the difference in the quality of workers across types. The normality

assumption in Assumption 9(b) can be potentially relaxed, for example, using the maximum

smoothed likelihood estimator of finite mixture models of Levine et al. (2011) in which

the type-specific distribution of εit and ζit is non-parametrically specified. Kasahara and

Shimotsu (2015) develop a likelihood-based procedure for testing the number of components

in normal mixture regression models.

Denote the log values of (Yit, L̃it, Kit,Mit, S
m
it , S

`
it,Wit) by (yit, ˜̀

it, kit,mit, s
m
it , s

`
it, wit) and

let sit := (s`it, s
m
it ) and x̃it := (˜̀

it, kit,mit). Under Assumptions 3-6, 9, the first order condi-

tions for the expected profit maximization imply that

smit = ln βjm + 0.5(σjε )
2 − εit, s`it = ln βj` + 0.5

{
(σjε )

2 − (σjζ)
2
}
− εit + ζit, (12)

mit − ˜̀
it = αt + ln(βjm/β

j
` ) + 0.5(σjζ)

2 + ψj + vit, (13)

where αt := ln(PL,t/PM,t) and (13) follows from (12), vit = bit − (ψj + ˜̀
t + lnPL,t + ζit), and

s`it − smit = bit − (lnPM,t +mit).

We propose two different estimation procedures. The first procedure directly maximizes

the log-likelihood function of a finite mixture model of production functions under additional

parametric assumptions on the law of motion for kit and the initial distribution of (kit, ωit),

where the likelihood function is a parametric version of (9). Because the maximum likelihood

estimator utilizes the distributional information, it is consistent even when T is small as long

as T ≥ 4. Our estimation procedure follows the two-stage identification proof of Proposition

3. The EM algorithm can be used to facilitate the computational complication of maximizing

the log-likelihood function of the finite mixture model.

In the second procedure, we first estimate the partial likelihood function of the input share

equations (12) under the normality assumption and use the posterior distribution of type

probabilities to classify each firm observation into one of the J types under the assumption

that T → ∞. This generates J data sets, where a firm’s production technology becomes

increasingly homogenous within each of the J data sets as T →∞. In the second stage, we

estimate the rest of the type-specific parameters by using each of J data sets.2

The first procedure can consistently estimate the parameter even when T is small as

long as T ≥ 4 and N → ∞ but it is computationally more complicated and requires more

auxiliary parametric assumptions than the second one. We introduce the second procedure

2Note that the identification of production function immediately follows from T →∞ without appealing
to Proposition 3 because, in principle, each firm’s production function can be identified from the time-series
data of each firm.
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because it is computationally much simpler than the first one although when T is small, the

second procedure leads to a biased estimator due to misclassification of types.

5.1 Maximum likelihood estimator

We make the parametric distributional assumptions and develop parametric maximum like-

lihood estimator.

Assumption 10. (a) T is fixed at T ≥ 4 and N → ∞. (b) Assumption 2 holds with

hj(ωit) = ρjωωit so that

ωit = ρjωωit−1 + ηit, (14)

gjη(η) = φ(η/σjη)/σ
j
η, and gjv(v) = φ(v/σjv)/σ

j
v. (c) Assumption 3 holds with the additional

assumption that, conditional on being type j, kit given (kit−1, ωit−1) is normally distributed

with mean ρjk0 + ρjkkkit−1 + ρjkωωit−1 and variance (σjk)
2 while the distribution of (ki1, ωi1)

follows a bivariate normal distribution with mean µj1 and variance Σj
1.

Collect the model parameters into θ1, and θ2 as follows. Let

θ1 = (π′,α′, θ1
1, ..., θ

J
1 )′, θ2 = ((θ1

2)′, ..., (θJ2 )′)′, and θj = ((θj1)′, (θj2)′)′, where α = (α1, ...., αT )′,

θj1 = (βjm, β
j
` , ψ

j, (σjε )
2, (σjζ)

2, (σjv)
2)′, and θj2 = (βj2, ..., β

j
T , β

j
k, (µ

j
1)′, vech(Σj

1)′, ρjk0, ρ
j
kk, ρ

j
kω, σ

2
k, ρ

j
ω, σ

j
η)
′.

We may write the probability density function of {sit, x̃it}Tt=1 for type j as

fjt({sit, x̃it}Tt=1) =
T∏
t=1

fjt(sit, ˜̀
it −mit; θ

j
1, αt)︸ ︷︷ ︸

=L1i(θ
j
1,α)

× fj1(x̃it|˜̀i1 −mi1; θj)
T∏
t=2

fjt(x̃it|˜̀it −mit, x̃it−1; θj)︸ ︷︷ ︸
=L2i(θ

j
1,θ

j
2)

,

(15)

where the exact expression for L1i(θ
j
1,α) and L2i(θ

j
2, θ

j
1) is derived below.

Given the decomposition (15), we estimate the model by two-stage maximum likeli-

hood estimation procedure. In the first stage, we estimate π, α, and θ1 by maximizing∑N
i=1 log(

∑J
j=1 π

jL1i(θ
j
1,α)) over π and θ1. In the second stage, we estimate π and θ2 given

the first stage estimate α̂ and θ̂1 by maximizing
∑N

i=1 log(
∑J

j=1 π
jL1i(θ̂

j
1, α̂)L2i(θ̂

j
1, θ

j
2)) over

π and θ2.

From equations (12)-(13), we can compute εit, ζit, and vit as

ε∗(sit; θ
j
1) := −smit + ln βjm + 0.5(σjε )

2, ζ∗(sit; θ
j
1) := s`it − smit − ln(βj`/β

j
m) + 0.5(σjζ)

2, (16)

v∗(˜̀
it −mit; θ

j
1, αt) := −

(
˜̀
it −mit + αt + ln(βjm/β

j
` ) + 0.5(σjζ)

2 + ψj
)
. (17)
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In the first stage, we estimate θ1 by the maximum likelihood estimator given by

θ̂1 = argmax
θ1

N∑
i=1

ln

(
J∑
j=1

πjL1i(θ
j
1)

)
with

L1i(θ
j
1,α) :=

T∏
t=1

1√
1− (ρjεζ)

2σjεσ
j
ζ

φ

(
ε∗(sit; θ

j
1)

σjε

)
φ

ζ∗(sit; θj1)− ρjεζ(σ
j
ζ/σ

j
ε )ε
∗(sit; θ

j
1)√

1− (ρjεζ)
2σjζ


× 1

σjv
φ

(
v∗(mit − ˜̀

it; θ
j
1, αt)

σjv

)
.

In the second stage, from (11), εt = E[smt |xt]− sm, and yt + smt = mt + ln(PM,t/PY,t), we

have

ωit = ω∗t (mit, ˜̀
it −mit, kit; θ

j) := (1− βjm− β
j
` )mit− βj`ψ

j − βjt − β
j
` (

˜̀
it−mit)− αjkkit, (18)

where βjt = βj0,t + ln(PM,t/PY,t).

By the change of variables in equation (18), we can relate the density function of mit

conditional on ˜̀
it−mit and kit to the density function of ωit, denoted by gω,t, as fjt(mit|`it−

mit, kit) = (1−βjm−β
j
` )g

j
ω,t(ω

∗
t (mit, ˜̀

it−mit, kit; θ
j)). Then, from (18)-(17) and Assumptions

2-3, we have

fj1(mi1|`i1 −mi1, ki1; θj) = (1− βjm − β
j
` )g

j
ω|k,1(ω∗i1(θj)|ki1), (19)

fjt(mit|`it −mit, kit, xit−1; θj) = (1− βjm − β
j
` )g

j
η(η
∗
it(θ

j)) for t ≥ 2, (20)

fjt(kit|xit−1; θj) = gjk,t(kit|kit−1, ω
∗
i,t−1(θj)) for t ≥ 2, (21)

where gjω|k,1(ωi1|ki1) is the density function of ωi1 conditional on ki1, gjk,t(kit|kit−1, ωit−1) is

the density function of kit given (kit−1, ωit−1), ω∗it(θ
j) := ω∗t (mit, `it −mit, kit; θ

j), and

η∗it(θ
j) := ω∗it(θ

j)− ρjωω∗i,t−1(θj). (22)

Therefore, under Assumption 10, it follows from (15) and (19)-(21) that

L2i(θ
j) = fj1(mi1|`i1 −mi1, ki1; θj)fj1(ki1; θj)×

T∏
t=2

fjt(mit|`it −mit, kit, xit−1; θj)fjt(kit|xit−1; θj)

= (1− βjm − β
j
` )
Tgjωk,1(ω∗i1(θj), ki1)

T∏
t=2

gjη(η
∗
it(θ

j))gjk,t(kit|kit−1, ω
∗
i,t−1(θj))
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where

gjη(η
∗
it(θ

j)) =
1

σjη
φ

(
η∗it(θ

j)

σjη

)
,

gjωk,1(ω∗i1(θj), ki1) = (2π)−3/2|Σj
1|−1/2 exp

(
−1

2

((
ki1

ω∗i1(θj)

)
− µj1

)′
(Σj

1)−1

((
ki1

ω∗i1(θj)

)
− µj1

))
,

gjk,t(kit|kit−1, ω
∗
i,t−1(θj)) =

1

σjk
φ

(
kit − (ρjk0 + ρjkkkit−1 + ρjkωωit−1)

σjk

)
.

Given the first stage estimate θ̂1 and α̂, the parameter π and θ2 can be estimated by

maximizing the log-likelihood function as

(π̂, θ̂2) = argmax
π,θ2

N∑
i=1

log

(
J∑
j=1

πjL1i(θ̂
j
1, α̂)L2i(θ̂

j
1, θ

j
2)

)
.

In practice, we use EM algorithm to estimate θ1, θ2, and π as discussed in the Appendix.

5.2 Estimation by classifying each observation into one of the J

types

Given the first stage estimate θ̂1, define the posterior probability of being type j for each

firm i by

π̂ji =
π̂jL1i(θ̂

j
1;T )∑J

k=1 π̂
kL1i(θ̂k1 ;T )

for j = 1, ..., J , (23)

where we explicitly write the dependence of the likelihood on the length of panel data T in

L1i(θ̂
k
1 ;T ). We classify each firm into one of the J types by taking the type that gives the

highest posterior probability as its type. Then, for each i, our estimator of Di is given by

D̂i = argmax
j=1,..,J

{π̂ji }.

Denote the true value of θj1 by θj∗1 . We assume that T → ∞ but require that T goes to

∞ at much slower rate than N .

Assumption 11. N, T →∞ and
√
N

exp(ajT )/
√
T
→ 0 for j = 1, ..., J , where aj = mink 6=j E[lnL1it(θ

j∗
1 )−

lnL1it(θ
k∗
1 )|i ∈ Ij] > 0.

Proposition 5. For each i ∈ Ij, π̂ji − 1 = op(N
−1/2) under Assumption 11.
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Proposition 5 implies that, when Assumption 11 holds, the possible classification error

across types does not affect our inference.

In the second stage, we compute the estimate of ηjit for t = 2, ..., T for each candidate

value of θj2 given the first stage estimate θ̂j1 as in (22) using the subsample of firms for which

D̂i = j. Then, stacking the moment conditions implied by E[η̂∗it(θ̂
j
1, θ

j
2)|kit, xit−1] = 0 for

t = 2, ..., T , we can use standard GMM procedure to estimate θj2 as

θ̂j2 = argmin
θ2

 1

#{i : D̂i = j}

∑
i∈{i:D̂i=j}

gi(θ2)

 1

#{i : D̂i = j}

∑
i∈{i:D̂i=j}

gi(θ2)

′ for j = 1, ..., J ,

where #{i : D̂i = j} is the number of firms with D̂i = j while gi(θ2) := (η∗i2(θ̂j1, θ
j
2)Zi2(θ̂j1, θ

j
2)′, ...,

η∗iT (θ̂j1, θ
j
2)ZiT (θ̂j1, θ

j
2)′)′ with Zit(θ̂

j
1, θ

j
2) := (1, kit, ω

∗
it−1(θ̂j1, θ

j
2))′.

6 Empirical Application

6.1 Data

We use plant-level panel data from the Census of Manufacture of Japan for 1986-2010. The

data set contains production information for the manufacturing industry in Japan. We

focus on plants with 30 or more employees because detailed data are consistently available

for these plants only.3 At the 4-digit level of industry classification available in the Census

of Manufacture, we have 276 industries in total. In the empirical application, we mainly

focus on concrete products and electric audio equipment because 1. both industries have

a large number of observations; 2. the former features a relatively small variation in the

intermediate input share, while the latter features a large variation as we show in Section

2. Therefore, it is useful to discuss these two industries to examine the importance of

unobserved heterogeneity.

The output (Y ) is defined as the sum of shipments, revenues from repairing and fixing

services, and revenue from performing subcontracted work. The initial value of capital (K)

is defined as fixed asset less land and the subsequent values of capital are constructed by

perpetual inventory method. The observed labor input (L̃) is the number of employees. The

intermediate input (M) is defined as the sum of material input, energy input, subcontracting

3The survey uses different questionnaires depending on the plant size: 1. Plants with 30 or more em-
ployees; 2. 4-29 employees; 3. 1-3 employees. The questionnaire for the plants with 30 or more employees
is more detailed. For example, from 2000, the census collects fixed asset data every 5 years only for plants
with less than 30 employees.
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Table 3: Summary statistics

Concrete Products Electric Audio Equipment
Obs Mean Std. Dev Min Max Obs Mean Std. Dev Min Max

yit 13892 11.37 0.68 7.6 14.39 10955 11.24 1.79 5.51 17.81
˜̀
it 13892 3.97 0.41 3.4 6.81 10955 4.52 0.9 3.4 8.53
kit 13892 10.91 0.86 5.22 14.06 10955 10.04 1.99 1.67 16.22
mit 13892 10.34 0.83 -0.13 13.89 10955 10.37 2.31 3.27 16.89
smit 13892 -0.98 0.35 -1.83 -0.33 10955 -0.99 0.79 -3.13 -0.08
s`it 13892 -1.47 0.43 -2.39 -0.5 10955 -1.39 0.78 -3.11 -0.16
Iit/Kit 13892 0.1 1.06 -1.04 115.02 10955 0.33 11.46 -1.28 1030.83

expenses for consigned production. Flow data such as shipments and various production costs

refer to the calendar year. The number of employees refers to the value at the end of the

year, while the stock of fixed assets refers to the beginning of the period. Table 3 presents

summary statistics for the variables we use in our empirical analysis.

6.2 Estimation of production function

This section presents estimation results for a random-coefficient Cobb-Douglas production

function with 3 technology types and 2 unobserved labor type within each technology type.

Tables 4 and 5 report parameter estimates with unobserved heterogeneity (J = 3×2 = 6) and

with homogeneous production function (J = 1) for the concrete products and electric audio

equipment industries. For both industries, the estimated coefficients suggest substantial

differences in the output elasticities with respect to labor, capital, and intermediate inputs

across different types of firms.

Comparing the two industries, the variation in β̂jm across types is larger for electric audio

equipment than concrete products, which is expected from the dispersion of the intermediate

input share shown in Section 2. Because β̂j` and β̂jk also varies across types, we have variation

in the capital-labor ratio β̂jk/β̂
j
` across types as well. For electric audio equipment, it ranges

from 0.24 (Type 1 and 2) to 1.53 (Type 5 and 6), while it ranges from 0.52 to 0.79 for

concrete products. As we show below, β̂jk/β̂
j
` is an important determinant of the response

of capital investment to productivity ω̂it. The returns to scale (β̂jm + β̂j` + β̂jk) is around 0.7

for concrete products, while it ranges from 0.77 to 0.93 for electric audio equipment. The

estimates of ψ̂j suggest that there is substantial unobserved heterogeneity in labor inputs

across types.

Figures 5 and 6 show the distribution of posterior type probabilities, defined by π̂ji =
π̂jLi(θ̂

j)∑J
k=1 π̂

kLi(θ̂k)
for j = 1, ..., J , across plants for the model with J = 6. The posterior probabil-
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Table 4: Estimates of Production Function (Concrete Products)

J = 1 J = 6
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

βjm 0.332 0.273 0.344 0.448
( 0.004 ) ( 0.005 ) ( 0.006 ) ( 0.009 )

βj` 0.224 0.283 0.212 0.161
( 0.003 ) ( 0.006 ) ( 0.003 ) ( 0.004 )

βjk 0.075 0.146 0.168 0.102
( 0.015 ) ( 0.021 ) ( 0.007 ) ( 0.012 )

βjm + βj` + βjk 0.632 0.701 0.723 0.711

βjk/β
j
` 0.336 0.517 0.791 0.637

ψj 0.000 -0.654 -0.041 -0.235 0.182 0.002 0.746
( NA ) ( 0.178 ) ( 0.050 ) ( 0.040 ) ( 0.041 ) ( 0.044 ) ( - )

π 1.000 0.046 0.268 0.230 0.224 0.175 0.058
( NA ) ( 0.009 ) ( 0.019 ) ( 0.016 ) ( 0.019 ) ( 0.022 ) ( 0.012 )

Obs 13892
No. Plants 914

ities for each type are concentrated on around 0 or 1. In the subsequent analysis, we assign

one of the J types to each plant based on its posterior type probability that achieves the

highest value across J types.

Ignoring unobserved heterogeneity may lead to substantial biases in the measurement

of productivity growth. To examine this issue, we take a specification with J = 6 as the

true model and compute the bias in the measurement of productivity growth when we use

a misspecified model with J = 1. Specifically, let ∆ωit := ∆yit − (β̂jt + β̂jm∆mit + β̂j`∆
˜̀
it +

β̂jk∆kit + ∆ε̂jit) for j = 1, 2, ..., 6 be an estimated productivity growth when J = 6 and let

∆ω̃it := ∆yit− (β̄t + β̄m∆mit + β̄`∆˜̀
it + β̄k∆kit + ∆ε̄it) be an estimated productivity growth

when J = 1, where {β̂jt , β̂jm, β̂
j
` , β̂

j
k}6

j=1 and {β̄t, β̄jm, β̄
j
` , β̄

j
k} denote estimated coefficients when

J = 6 and J = 1, respectively. Then, we compute the bias as

∆ω̃it = ∆ωit + (β̄m − β̂jm)∆mit + (β̄` − β̂j` )∆`it + (β̄jk − β̂
j
k)∆kit + (∆ε̄it −∆ε̂jit)︸ ︷︷ ︸

:=Biasit

.

The first row of Table 6, designated by Mean of |Biasit|
Mean of |∆ω̃it| , reports the ratio of the average absolute

value of bias to the average productivity growth within each of three subsamples, classified by

technology types. The magnitude of the bias ranges from 0.07 to 0.18 for concrete products,

while it ranges from 0.14 to 0.44 for electric audio equipment. The second row of Table 6,

designated by Mean of Biasit
Mean of |∆ω̃it|

∣∣∣
∆ωit>0

, reports the ratio of the average value of bias to the average
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Table 5: Estimates of Production Function (Electric Audio Equipment)

J = 1 J = 6
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

βjm 0.281 0.136 0.364 0.597
( 0.008 ) ( 0.007 ) ( 0.022 ) ( 0.01 )

βj` 0.296 0.507 0.228 0.132
( 0.006 ) ( 0.012 ) ( 0.012 ) ( 0.006 )

βjk 0.076 0.122 0.185 0.202
( 0.016 ) ( 0.01 ) ( 0.021 ) ( 0.017 )

βjm + βj` + βjk 0.652 0.765 0.778 0.932

βjk/β
j
` 0.256 0.242 0.813 1.526

ψj 0.000 -0.999 0.474 -0.258 0.201 -0.215 0.798
( NA ) ( 0.135 ) ( 0.139 ) ( 0.389 ) ( 0.142 ) ( 0.115 ) ( - )

π 1.000 0.278 0.137 0.134 0.158 0.164 0.128
( NA ) ( 0.023 ) ( 0.017 ) ( 0.163 ) ( 0.149 ) ( 0.015 ) ( 0.014 )

Obs 10913
No. Plants 907

Table 6: Bias in ∆ω̃

Concrete Products Electric Audio Equipment
J = 6 J = 6

Type 1 - 2 Type 3 - 4 Type 5 - 6 Type 1 - 2 Type 3 - 4 Type 5 - 6
Mean of |Biasit|
Mean of |∆ω̃it| 0.126 0.074 0.181 0.226 0.140 0.440

Mean of Biasit
Mean of |∆ω̃it|

∣∣∣
∆ωit>0

-0.098 0.002 0.167 -0.200 0.084 0.247

βjm 0.273 0.344 0.448 0.136 0.364 0.597

productivity growth conditional on positive productivity growth measured by the model with

J = 6. Note that Biasit ≈ (β̂jm − β̄m)∆mit and Corr(∆ωit,∆mit) > 0. Thus, the average

bias conditional on ∆ωit > 0 tends to be positive when β̂jm > β̄jm. The empirical results

confirm this pattern: for both concrete products and electric audio equipment, Types 3-4

and 5-6 have β̂jm higher than β̄m and thus the estimated bias Mean of Biasit
Mean of |∆ω̃it|

∣∣∣
∆ωit>0

are positive

for these types. These results suggest that ignoring unobserved heterogeneity could result

in serious bias in estimated productivity growth and the bias is likely to have a systematic

pattern depending on the values of β̂jm.

As an example of using the estimated productivity growth in empirical analysis, we now

examine whether unobserved heterogeneity captured by type-specific production function

parameters is important for an investment decision. Specifically, for each subsample classified
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Figure 5: Posterior Probabilities (Concrete Products)
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by type, we estimate the following linear investment model

Iit
Kit

= α0 + αjωω̂it + quadratic of kit + ζit,

where Iit/Kit denotes the ratio of investment to capital stock.

Table 7 reports the OLS estimates of αjω in the first row as well as the quantile regression

estimates of αjω at the 10th, 25th, 50th, 75th, and 90th percentiles across different types for

J = 1 and 6 for concrete products. Table 8 reports the same estimates for the electric audio

equipment industry. When J = 1, the OLS coefficient of ωit is estimated significantly at

0.06 for concrete products and at 0.5 for electric audio equipment.

For the model with J = 6, the estimated coefficients of ωit substantially differ across

different types of plants, suggesting that the investment response to a productivity shock

differs across plants. In both OLS and quantile regression results, the estimated coefficients

tend to be higher for the types with higher β̂jm and β̂jk/β̂
j
` , suggesting that firms invest more

given a positive productivity shock if they have production technology with high material

shares and high capital-labor ratios. In the case of quantile regressions, this pattern is

particularly pronounced for firms with high investment ratios.
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Figure 6: Posterior Probabilities (Electric Audio Equipment)
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Table 7: The Effect of ωit on Investment (Concrete Products)

J = 1 J=6
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

αjω 0.06 0.06 −0.02 0.08 0.06 0.01 0.12
(0.02) (0.04) (0.10) (0.01) (0.01) (0.06) (0.03)

αjω(0.10) 0.00 −0.00 0.00 0.00 0.01 0.02 0.00
(0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01)

αjω(0.25) 0.01 0.00 0.00 0.03 0.02 0.03 0.02
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

αjω(0.50) 0.02 0.02 0.02 0.04 0.04 0.04 0.04
(0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01)

αjω(0.75) 0.04 0.05 0.03 0.08 0.07 0.07 0.08
(0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.03)

αjω(0.90) 0.07 0.06 0.07 0.13 0.10 0.09 0.14
(0.01) (0.02) (0.02) (0.03) (0.02) (0.02) (0.04)

βjm 0.33 0.27 0.27 0.34 0.34 0.45 0.45

βjk/β
j
` 0.34 0.52 0.52 0.79 0.79 0.64 0.64

(Iit/Kit) 0.10 0.13 0.14 0.08 0.07 0.12 0.09
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Table 8: The Effect of ωit on Investment (Electric Audio Equipment)

J = 1 J=6
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

αjω 0.50 −0.19 −0.47 0.29 0.18 0.11 0.10
(0.11) (0.13) (1.26) (0.07) (0.34) (0.02) (0.03)

αjω(0.10) 0.00 0.00 0.00 0.01 0.00 −0.00 0.01
(0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.01)

αjω(0.25) 0.00 0.00 0.00 0.01 0.00 0.01 0.02
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

αjω(0.50) 0.01 0.00 0.02 0.04 0.01 0.04 0.04
(0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.01)

αjω(0.75) 0.03 0.02 0.04 0.08 0.03 0.06 0.07
(0.00) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

αjω(0.90) 0.06 0.01 0.01 0.09 0.09 0.18 0.10
(0.00) (0.01) (0.02) (0.03) (0.02) (0.05) (0.04)

βjm 0.28 0.14 0.14 0.36 0.36 0.60 0.60

βjk/β
j
` 0.26 0.24 0.24 0.81 0.81 1.53 1.53

(Iit/Kit) 0.34 0.34 0.97 0.15 0.47 0.08 0.11
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A Appendix

A.1 Proof of Proposition 1

We drop the superscript j and we have Lt = L̃t and Xt = X̃t because J = 1. Let

(s`t, s
m
t ) = (lnS`t , lnS

m
t ) and let ∆st := s`t − smt . Denote the density function of (smt ,∆st, Xt)

by pt(s
m
t ,∆st, Xt), which can be identified from Pt(St, Xt), and let gε,t(·) and gζ,t(·) be

the marginal densities of εt and ζt, respectively. Because E[smt |Xt] = ln (GM,t(Xt)Et[e
ε]) and

E[∆st|Xt] = ln
(
GL,t(Xt)/GM,tEt[e

ζ ]
)
, we have smt = E[smt |Xt]−εt and ∆st = E[∆st|Xt]−ζt

from the second and third equations in (6). Then, we may identify gεζ,t(·) as gεζ,t(ε, ζ) =∫
pt(E[smt |Xt = x]−ε, E[∆st|Xt = x]−ζ, x)dx. Furthermore, from E[smt |Xt] = lnGM,t(Xt)+

ln
∫
eεgε,t(ε)dε, we may identify GM,t(Xt) as GM,t(Xt) = exp

(
E[smt |Xt]− ln

∫
eεgε,t(ε)dε

)
and, similarly, GL,t(Xt) = exp

(
E[∆st|Xt] + ln

∫
eζgζ,t(ζ)dζ

)
. Given the identification of

GM,t(X), GL,t(X), and gζ,t(ζ), we may identify gv,t(v) from the density of Xt because

vt = lnPM,tMt − ln
(
LitGL,t(Xt)

∫
eζgζ,t(ζ)dζ/GM,t(Xt)

)
. PL,t is identified as lnPL,t =

Et[ln
(
S`tPM,tMt/S

m
t Lt

)
] given that vt and ζt are mean zero random variables. This proves

part (a).

We proceed to prove part (b). Fix (L0,M0) ∈ L ×M such that L0 < Lt and M0 < Mt.

Because
GL,t(Xt)

Lt
= ∂ lnFt(Xt)

∂Lt
and

GM,t(Xt)

Mt
= ∂ lnFt(Xt)

∂Mt
, we have

lnFt(Kt, Lt,Mt) =

∫ Lt

L0

GL,t(Kt, L,Mt)

L
dL+

∫ Mt

M0

GM,t(Kt, L0,M)

M
dM + lnFt(Kt, L0,M0).

(24)
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It follows from (2), (24), εt = E[smt |Xt]− sm, and lnYt + smt = lnMt + ln(PM,t/PY,t). that

ωt = ỹt(Xt; θ1)− lnFt(Kt, L0,M0), where (25)

ỹt(Xt; θ1) := lnMt + ln(PM,t/PY,t)−
{∫ Lt

L0

GL,t(Kt, L,Mt)

L
dL+

∫ Mt

M0

GM,t(Kt, L0,M)

M
dM − E[smt |Xt]

}
.

Substituting the right-hand side of (25) to ωt = h(ωt−1) + ηt and rearranging terms give

ỹt(Xt; θ1) = lnFt(Kt, L0,M0) + h (ỹt−1(Xt−1; θ1)− lnFt−1(Kt−1, L0,M0)) + ηt, (26)

where the second term on the right hand side only depends on Xt−1. Fix K0 ∈ K and let

Ct := lnFt(K0, L0,M0). Then, from (26) and E[ηt|It−1] = 0, lnFt(Kt, L0,M0) is identified

up to constant Ct as

lnFt(Kt, L0,M0) = Ct + E[ỹt(Xt; θ1)|Kt, Xt−1]− E[ỹt(Xt; θ1)|Kt = K0, Xt−1]. (27)

It follows from the moment restriction E[ωt] = 0 with (25) and (27) that we may identify

Ct as

Ct = E {ỹt(Xt; θ1)− E[ỹt(Xt; θ1)|Kt, Xt−1] + E[ỹt(Xt; θ1)|Kt = K0, Xt−1]} .

Therefore, lnFt(Kt, L0,M0) is identified from (27), and the identification of lnFt(Lt, Kt,Mt)

for t ≥ 2 follows from (24) given that the first two terms on the right hand side of (24) is

identified from and GL,t(Xt) and GM,t(Xt).

Finally, we prove the identification of gη(·) and h(·). Because ωt = ỹt(Xt; θ1)−lnFt(Kt, L0,M0),

we may identify the joint density function of ωt and ωt−1, denoted by pω(ωt, ωt−1), from

the joint distribution of (Xt, Xt−1) for t ≥ 3. Then, h(ωt−1) is identified as h(ωt−1) =

Et[ωt|ωt−1] =
∫
ωtpω(ωt|ωt−1)dωt, where pω(ωt|ωt−1) = pω(ωt, ωt−1)/

∫
pω(ωt, ωt−1)dωt, while

the density function of ηt is identified as gη(η) =
∫
pω(h(ωt−1) + η, ωt−1)dωt−1. This proves

part (b).
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A.2 Proof of Proposition 2

The distribution of {St, X̃t}Tt=1 for type j is given by

Pj
t({St, X̃t}Tt=1) = Pj

1(S1, X̃1)
T∏
t=2

Pj
t(St, X̃t|{St−s, X̃t−s}t−1

s=1)

= Pj
1(S1|X̃1)Pj

1(X̃1)
T∏
t=2

Pj
t(St|X̃t, {St−s, X̃t−s}t−1

s=1)Pj
t(X̃t|{St−s, X̃t−s}t−1

s=1).

(28)

In view of the second and the third equations of (6), we have

Pj
t(St|X̃t, {St−s, X̃t−s}t−1

s=1) = Pj
t(St|X̃t). (29)

Furthermore,

Pj
t(X̃t|{St−s, X̃t−s}t−1

s=1) = Pj
t(Kt, ωt, vt|{St−s, Kt−s, ωt−s, vt−s}t−1

s=1)

= Pj
t(ωt, vt|Kt, {St−s, Kt−s, ωt−s, vt−s}t−1

s=1)Pj
t(Kt|{St−s, Kt−s, ωt−s, vt−s}t−1

s=1)

= Pj
ω(ωt|ωt−1)Pj

v(vt)P
j
t(Kt|Kt−1, ωt−1)

= Pj
t(Kt, ωt, vt|Kt−1, ωt−1)

= Pj
t(Kt, ωt, vt|Kt−1, ωt−1, vt−1)

= Pj
t(X̃t|X̃t−1),

(30)

where the first equality and the last equality hold because there is a one-to-one mapping

between X̃t and (Kt, ωt, vt) in view of Assumption 4(b), the third equality follows from

Assumptions 2 and 3, the fifth equality holds because vt is i.i.d.. Therefore, the stated result

follows from (28)-(30).

A.3 Proof of Proposition 3

We apply the argument of Kasahara and Shimotsu (2009) and Hu and Shum (2012) under

the assumption that unobserved heterogeneity is permanent and discrete. The proof is

constructive.

Consider the case that T = 4. Fix (Z2, Z3) at (Z2, Z3) and choose (Z̄2, Z̄3) ∈ Z2 × Z3,

(a1, ..., aJ) ∈ ZJ1 and (b1, ..., bJ−1) ∈ ZJ−1
4 that satisfy Assumption 8. Evaluating (9) at
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(Z2, Z3) = (Z2, Z3) gives

P ({Zt}4
t=1) =

J∑
j=1

πjP j
4 (Z4|Z3)P j

3 (Z3|Z2)P j
2 (Z2|Z1)P j

1 (Z1)

=
J∑
j=1

λj4(Z4|Z3)λj3(Z3|Z2)λ̄j2(Z1, Z2),

(31)

where λj4(Z4|Z3) := P j
4 (Z4|Z3 = Z3), λj3(Z3|Z2) := P j

3 (Z3 = Z3|Z2 = Z2), and λ̄j2(Z1, Z2) :=

πjP j
2 (Z2 = Z2|Z1)P j

1 (Z1). Integrating out Z4 from (31) gives

P ({Zt}3
t=1) =

J∑
j=1

λj3(Z3|Z2)λ̄j2(Z1, Z2). (32)

Let fZ2,Z3(a, b) := P ((Z1, Z2, Z3, Z4) = (a, Z2, Z3, b)) and f̄Z2,Z3(a) := P ((Z1, Z2, Z3) =

(a, Z2, Z3)). Evaluating (31) at Z1 = a1, ..., aJ and Z4 = b1, ..., bJ−1 gives M(M − 1)

equations while evaluating (32) at Z1 = a1, ..., aJ gives M equations. Collecting these

M(M − 1) +M = M2 equations and denoting them using matrix notation, we have

PZ2,Z3 = L′z3DZ3|Z2L̄z2 , (33)

where

PZ2,Z3 :=


f̄Z2,Z3(a1) f̄Z2,Z3(a2) · · · f̄Z2,Z3(aJ)

fZ2,Z3(a1, b1) fZ2,Z3(a2, b1) · · · fZ2,Z3(aJ , b1)
...

... . . .
...

fZ2,Z3(a1, bJ−1) fZ2,Z3(a2, b1) · · · fZ2,Z3(aJ , bJ−1)

 ,

Lz3 :=


1 λ1

4(b1|Z3) · · · λ1
4(bJ−1|Z3)

...
... . . .

...

1 λJ4 (b1|Z3) · · · λJ4 (bJ−1|Z3)

 , L̄z2 :=


λ̄1

2(a1, Z2) · · · λ̄1
2(aJ , Z2)

...
... . . .

λ̄J2 (a1, Z2) · · · λ̄J2 (aJ , Z2)

 ,
(34)

and DZ3|Z2 := diag
(
λ1

3(Z3|Z2), ..., λJ3 (Z3|Z2)
)
. Evaluating (33) at four different points,

(Z2, Z3), (Z̄2, Z3), (Z2, Z̄3), and (Z̄2, Z̄3) gives

PZ2,Z3 = L′z3DZ3|Z2L̄z2 , PZ̄2,Z3
= L′z3DZ3|Z̄2

L̄z̄2 ,

PZ2,Z̄3
= L′z̄3DZ̄3|Z2

L̄z2 , PZ̄2,Z̄3
= L′z̄3DZ̄3|Z̄2

L̄z̄2 .
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Then, under Assumption 8,

A := PZ2,Z3(PZ2,Z̄3
)−1PZ̄2,Z̄3

(PZ̄2,Z3
)−1 = L′z3DZ2,Z̄2,Z3,Z̄3

(L′z3)
−1,

where

DZ2,Z̄2,Z3,Z̄3
:= DZ3|Z2(DZ̄3|Z2

)−1DZ̄3|Z̄2
(DZ3|Z̄2

)−1. (35)

Because AL′z3 = L′z3DZ2,Z̄2,Z3,Z̄3
, the eignvalues of A determine the diagonal elements

of DZ2,Z̄2,Z3,Z̄3
while the right eigenvectors of A determine the columns of L′z3 up to multi-

plicative constant. Denote the right eigenvectors of A by L′z3C, where C is some diagonal

matrix. Now we can determine the diagonal matrix DZ2,Z̄2,Z3,Z̄3
C from the first row of

AL′z3C = L′z3DZ2,Z̄2,Z3,Z̄3
C because the first row of L′z3 is a vector of ones. Then, L′z3 is de-

termined uniquely from AL′z3C and DZ2,Z̄2,Z3,Z̄3
C as L′z3 = (AL′z3C)(DZ2,Z̄2,Z3,Z̄3

C)−1 in view

of AL′z3 = L′z3DZ2,Z̄2,Z3,Z̄3
. Therefore, Lz3 is identified. Repeating the above argument for

all values of Z3 ∈ Z3 identifies {P j
4 (Z4|Z3 = Z3)}Jj=1 for each Z3 ∈ Z3 for Z4 = (b1, ..., bJ−1)

that satisfies Assumption 8(a).

Evaluating P (Z4, Z3|Z2) at (Z2, Z3) = (Z2, Z3), we have

P (Z4, Z3 = Z3|Z2 = Z2) =
J∑
j=1

π̃jZ2
P j

4 (Z4|Z3)P j
3 (Z3|Z2) =

J∑
j=1

λj4(Z4|Z3)λ̃j3(Z3|Z2), (36)

where π̃jZ2
:=

πjP j2 (Z2=Z2)

P2(Z2=Z2)
and λ̃j3(Z3|Z2) := π̃jZ2

P j
3 (Z3 = Z3|Z2 = Z2). Then, evaluating (36)

at Z4 = b1, ..., bJ−1 and collecting them into a vector together with P (Z3 = Z3|Z2 = Z2) =∑J
j=1 λ̃

j
3(Z3|Z2) gives

pZ3|Z2 = L′z3dZ3|Z2 ,

where dZ3|Z2 = (λ̃1
3(Z3|Z2), ...., λ̃J3 (Z3|Z2))′ and pZ3|Z2 = (P (Z3 = Z3|Z2 = Z2), P ((Z4, Z3) =

(b1, Z3)|Z2 = Z2), ..., P ((Z4, Z3) = (bJ−1, Z3)|Z2 = Z2))′. Therefore, we uniquely determine

π̃jZ2
P j

3 (Z3 = Z3|Z2 = Z2) from dZ3|Z2 = (L′z3)
−1pZ3|Z2 . Repeating the above argument across

all possible values of (Z2, Z3) ∈ Z2 × Z3 determines the value of π̃jZ2
P j

3 (Z3 = Z3|Z2 = Z2)

for every (Z2, Z3) ∈ Z2 × Z3. Then, π̃jZ2
and P j

3 (Z3 = Z3|Z2 = Z2) are uniquely identified

as π̃jZ2
=
∫
Z3
π̃jZ2

P j
3 (Z3|Z2 = Z2)dZ3 and P j(Z3 = Z3|Z2 = Z2) = [π̃jZ2

P j
3 (Z3 = Z3|Z2 =

Z2)]/π̃jZ2
. Therefore, {P j

3 (Z3|Z2)}Jj=1 is identified.

Evaluating P j
3 (Z3|Z2) at (Z2, Z3) = (Z3, Z2) for j = 1, ..., J identifies DZ3|Z2 and, from

(33), L̄z2 is identified as L̄z2 = (DZ3|Z2)
−1(L′z3)

−1PZ2,Z3 . Once DZ3|Z2 and L̄z2 are identi-

fied, we can determine Lz3(ζ) = (λ1
4(ζ|Z3), ..., λJ4 (ζ|Z3))′ for any ζ ∈ Z4 by constructing

pZ2,Z3(ζ) = (fZ2,Z3(a1, ζ), fZ2,Z3(a2, ζ), ..., fZ2,Z3(aJ , ζ)) from the observed data, and using
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the relationship Lz3(ζ) = (DZ3|Z2)
−1(L̄′z2)

−1pZ2,Z3(ζ)′. Similarly, we can determine L̄z2(ξ) =

(λ̄1
2(ξ, Z2), ..., λ̄J2 (ξ, Z2))′ for any ξ ∈ Z1 by constructing p̄Z2,Z3(ξ) = (f̄Z2,Z3(ξ), fZ2,Z3(ξ, b1), fZ2,Z3(ξ, b2), ..., fZ2,Z3(ξ, bJ−1))′

and using the relationship L̄z2(ξ) = (DZ3|Z2)
−1(L′z3)

−1p̄Z2,Z3(ξ). Therefore, {P j
4 (Z4|Z3 =

Z3), πjP j
2 (Z2 = Z2|Z1)P j

1 (Z1)}Jj=1 is identified. Repeating this argument for all possi-

ble values of (Z2, Z3) ∈ Z2 × Z3 identifies {P j
4 (Z4|Z3), πjP j

2 (Z2|Z1)P j
1 (Z1)}Jj=1. Finally,

{πj, P j
2 (Z2|Z1), P j

1 (Z1)}Jj=1 is identified from {πjP j
2 (Z2|Z1)P j

1 (Z1)}Jj=1 as πj =
∫
Z1

∫
Z2

[πjP j
2 (Z2|Z1)P j

1 (Z1)]dZ2dZ1,

P j
1 (Z1) = [

∫
Z2

[πjP j
2 (Z2|Z1)P j

1 (Z1)]dZ2]/πj, and P j
2 (Z2|Z1) = [πjP j

2 (Z2|Z1)P j
1 (Z1)]/[πj ×

P j
1 (Z1)]. This proves the stated result.

A.4 Proof of Proposition 4

We first show that PL,t and {ψjt}Jj=1 are identified from {πj, P j
t (Bt)}Jj=1. Because Ej

t [lnBt] =

ln(PL,te
ψjt ), we may have ψjt = Ej

t [lnBt] − PL,t for j = 1, ..., J , where Ej
t [lnBt] is iden-

tified from P j
t (Wt). Then, PL,t is identified from

∑J
j=1 π

jeE
j
t [lnBt]−lnPL,t = 1 as lnPL,t =

ln
(∑J

j=1 π
jeE

j
t [lnBt]

)
. Once PL,t and {ψjt}Jj=1 are identified, then repeating the argument in

the proof of Proposition 1 for each type proves the stated result.

A.5 Proof of Proposition 5

Consider i ∈ Ij so that j = j∗(i). For each T , let πjT := πj∗L1i(α
j∗
m ,σ

j∗
ε ;T )∑J

k=1 π
k∗L1i(αk∗m ,σk∗ε ;T )

, where

(πj∗, αj∗m , σ
j∗
ε ) is the true value of (πj, αjm, σ

j
ε ). Then,

π̂ji − 1 = (π̂ji − π
j
T ) + (πjT − 1). (37)

For the first term, π̂ji − πjT = Op(N
−1/2) as N → ∞ because the maximum likelihood

estimator (π̂j, α̂jm, σ̂
j
ε ) is a root-N consistent estimator of (πj∗, αj∗m , σ

j∗
ε ) when the number of

components J is correctly specified.

For the second term of (37), define ξjkit := lnL1it(α
j∗
m , σ

j∗
ε ) − lnL1it(α

k∗
m , σ

k∗
ε ) and ajk :=

E[ξjkit |i ∈ Ij] > 0, and we have

πjT =
1

1 +
∑

k 6=j (πk∗/πj∗) exp
(
−
∑T

t=1 ξ
jk
it

) . (38)
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For i ∈ Ij, k 6= j,

exp

(
−

T∑
t=1

ξjkit

)
=

{
exp

(
−

T∑
t=1

ξjkit

)
− exp(−ajkT )

}
+ exp(−ajkT )

= exp(−ajkT )

{
exp

(
−

T∑
t=1

(ξjkit − ajk)

)
− 1

}
︸ ︷︷ ︸

Op(T 1/2)

+ exp(−ajkT )

= Op

(
exp(−ajkT )T 1/2

)
as T → ∞. It follows that

∑
k 6=j
(
πk

∗
/πj∗

)
exp

(
−
∑T

t=1 ξ
jk
it

)
is Op

(
exp(−ajT )T 1/2

)
, where

aj := mink 6=j a
jk. Therefore, in view of (38), the consistency of πjT as T →∞ and the mean

value theorem give

πjT − 1 = Op

(
exp(−ajT )T 1/2

)
. (39)

Then, the stated result follows from (37), (39), and π̂ji−π
j
T = op(N

−1/2) becauseOp

(
exp(−ajT )T 1/2

)
=

op(N
−1/2) as N, T →∞ under Assumption 11.

A.6 Assumption 8 under Cobb-Douglas production function

In the following, we discuss the conditions under which Assumption 8 holds when the pro-

duction function is Cobb-Douglas.

Example 1 (continued). For random coefficients model (10), we may write Lz̄3, L̄z̄2, and

DZ̄3|Z̄2
as follows. Throughout the analysis, we fix the value of {Yt}Tt=1 at, say, {yt}Tt=1 so

that the variation in the values of aj’s and bj’s are due the variation in the values of Z1 and

Z4. Denote Z̄3 = (y3, s̄3, x̄3) and bh = (y3, b
s
h, x̄4) for h = 1, ..., J − 1. Then,

λj
Z̄3

(bh) = P j
4 (S4 = bsh|X4 = x̄4)P j

4 (X4 = x̄4|X3 = x̄3) = cj4g
j
ε (ln(αjm,4E j)− ln bsh),

where cj4 = P j
4 (X4 = x̄4|X3 = x̄3). Therefore, we have

Lz̄3 = diag{c1
4, ...., c

J
4}


1 g1

ε (ln(α1
m,4E1)− ln bs1) · · · g1

ε (ln(α1
m,4E1)− ln bsJ−1)

...
... . . .

...

1 gJε (ln(αJm,4EJ)− ln bs1) · · · gJε (ln(αJm,4EJ)− ln bsJ−1)

 .
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Similarly, denote Z̄2 = (s̄2, x̄2) and ah = (ash, x̄1) for h = 1, ..., J . Then,

λj
Z̄2

(ah) = P j
2 (S2 = s̄2|X2 = x̄2)P j

1 (S1 = ash|X1 = x̄1)P j
1 (X1 = x̄1) = cj2g

j
ε (ln a

s
h − ln(αjmE)),

where cj2 = P j
2 (S2 = s̄2|X2 = x̄2)P j

1 (X1 = x̄1). Then, we have

L̄z̄2 = diag{c1
2, ...., c

J
2}


g1
ε (ln(α1

m,1E1)− ln as1) · · · g1
ε (ln(α1

m,1E1)− ln asJ)
... . . .

...

gJε (ln(αJm,1EJ)− ln as1) · · · gJε (ln(αJm,1EJ)− ln asJ)

 .
For Assumption 8(a), we choose x̄4, x̄3, x̄2, x̄1, and s̄2 so that cj2 6= 0 and cj3 6= 0 for

any j and find (as1, ..., a
s
J) and (bs1, ..., b

s
J−1) such that Lz̄3 and L̄z̄2 are nonsingular. Because

each point of (as1, ..., a
s
J) and (bs1, ..., b

s
J−1) refers to a value of lnS1 and lnS4, the full rank

condition of Lz̄3 and L̄z̄2 holds if the value of probability density function of lnS1 and lnS4

changes heterogeneously across types when we change the value of lnS1 and lnS4.

Let Z̄3 = (s̄3, x̄3) and Z̄2 = (s̄2, x̄2). Then,

λj(Z̄3|Z̄2) = πjgjε (ln s̄3 − ln(αjm,3E j))P
j
3 (X3 = x̄3|X2 = x̄2). (40)

Pick Z3 = (s3, x3) and Z2 = (s2, x2). Assumption 8(b) holds if P j
3 (x̄3|x2) 6= 0 and P j

3 (x3|x̄2) 6=
0 for all j. Then, we have

DZ3|Z2(DZ̄3|Z2
)−1DZ̄3|Z̄2

(DZ3|Z̄2
)−1 = diag

{
P 1

3 (x3|x2)

P 1
3 (x̄3|x2)

P 1
3 (x̄3|x̄2)

P 1
3 (x3|x̄2)

, ...,
P J

3 (x3|x2)

P J
3 (x̄3|x2)

P J
3 (x̄3|x̄2)

P J
3 (x3|x̄2)

}
.

Therefore, Assumption 8(c) requires that
P j3 (x3|x2)

P j3 (x̄3|x2)

P j3 (x̄3|x̄2)

P j3 (x3|x̄2)
takes different values across dif-

ferent j’s, namely, the transition probability of X3 given X2 changes heterogeneously across

types when we change the value of X2.
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