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Abstract

This paper studies frictions and inefficiencies in healthcare delivery under

capacity constraints. We develop a novel economic model where a health-

care facility’s admission/discharge decisions depend on bed occupancy through

capacity constraints and demand inducements. It generates behavioral and

efficiency implications: (1) Capacity constraints imply that admissions/dis-

charges respond to occupancy fluctuations more intensely at higher baseline

occupancy, whereas demand inducements imply that the responses are more in-

tense at lower baseline occupancy, so the relative importance of the mechanisms

is testable. (2) If capacity constraints are more important, then smoothing oc-

cupancy across homogeneous facilities can increase aggregate service provision.

Applying the framework to Japanese nursing facilities, with patient deaths as

occupancy shocks, we find that admission responses to occupancy fluctuations

are mainly driven by capacity constraints. Our simulation shows that smooth-

ing occupancy across facilities can substantially increase aggregate admissions

without expanding capacity, suggesting inefficient access to facilities in the sta-

tus quo.
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1 Introduction

The efficient delivery of products and services under capacity constraints is a central

issue in the economy. In many markets such as health care, housing, and transporta-

tion, governments regulate the supply capacity for a variety of reasons, including

preventing unnecessary services and public spending, controlling externalities, and en-

suring comfort and safety. However, such regulations tighten the capacity constraints

faced by suppliers and can delay or prevent valuable market transactions, thereby

reducing efficiency. Improving market efficiency while imposing capacity constraints

is a common challenge faced by governments in a wide range of public policies.

Efficiency in the provision of capacity-constrained services depends on the allo-

cation of capacity utilization across providers, as well as on the overall capacity. If

one provider faces a high congestion cost (or a binding capacity constraint) while

another has spare capacity, efficiency can be improved by shifting some transactions

from the former to the latter without changing overall capacity. Such inefficient allo-

cations may arise and persist if providers need time to adjust their service provision

to demand shocks. To consider an efficiency-improving policy, we need to know how

capacity affects heterogeneous providers: in the above example, we need to verify

that a (marginal) increase in capacity does increase the provision of valuable services

more intensely for the more congested provider than for less congested one, in order

to argue for the (marginal) reallocation of service delivery.

We study frictions and inefficiencies in healthcare access under capacity con-

straints. The imposition of capacity constraints on healthcare providers has been

justified by concerns about supplier-induced demand: providers may use excess ca-

pacity for patients with low medical needs to increase revenues. More recently, re-

searchers have begun to focus on the negative side of capacity constraints, such as

congestion costs: healthcare productivity may be reduced when providers are con-

gested. The existing literature is limited in two ways. First, the positive and negative

aspects of capacity constraints are analyzed separately, and their trade-offs are not

examined in a unified manner. Second, they typically focus on the behavior of indi-

vidual suppliers, and do not discuss the efficiency implications at the market level.

We fill these gaps and explore how to efficiently manage capacity utilization in the

healthcare sector.
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Specifically, we focus on nursing facilities and analyze how bed occupancy affects

their admission and discharge decisions. In inpatient care, bed occupancy is a key

measure of capacity utilization and capacity constraints, and the number of (newly)

treated patients measures access to health care (Alexander and Schnell, 2024) and

production quantity (Grieco and McDevitt, 2017).1 The increased demand for nurs-

ing facility care has raised concerns among policymakers and academics about the

accessibility of nursing facilities. Recent studies find evidence that facilities engage

in selective admissions (He and Konetzka, 2015; Gandhi, 2023; Corredor-Waldron,

2022) and discharges (Hackmann et al., 2024) when bed supply is limited. However,

increasing capacity may or may not be a desirable policy, depending on the relative

importance of capacity constraints and provider incentives to induce demand.

To provide a unified framework for assessing the role of capacity utilization, we

build a novel economic model that shows how a facility’s admission and discharge

decisions depend on bed occupancy. In the model, the marginal cost of serving an

additional patient2 increases with occupancy, possibly reflecting the altruistic facility’s

concern about quality deterioration, as well as monetary costs such as diminishing

returns and higher input costs. The model also allows for (loose) income targeting

or occupancy targeting, which incentivizes the facility to induce demand in response

to a reduction in occupancy. In addition, the facility incurs admission and discharge

costs, which represent frictions in adjusting patient volume in the short run.

The model predicts that the facility will respond to an exogenous decrease in

occupancy by increasing admissions and decreasing discharges. The responses are

driven by two mechanisms. First, an income effect incentivizes the facility to increase

admissions to compensate for lost revenue. Second, a cost effect allows the facility

to increase admissions by reducing the marginal cost of service. The magnitude of

the responses depends on admission and discharge frictions. In a frictionless case,

the facility adjusts the net admissions to exactly offset the occupancy reduction. In

contrast, in a frictional case, it only partially offsets the occupancy shock. This

suggests that an occupancy shock has a persistent effect on the facility’s admissions,

discharges, and occupancy.

The model also allows us to empirically assess the relative importance of the

1Admissions and discharges also measure bed turnover, another important policy target.
2We use the term “patients” to refer to the people who use nursing facility services.
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mechanisms. If the variation in the cost (income) effect mainly explains the variation

in the admission/discharge responses at different levels of baseline occupancy, then

the responses will be more (less) intense at higher occupancy levels. Moreover, we

can place some bounds on the levels of the two effects at any occupancy, using em-

pirically observable quantities. Disentangling these mechanisms is crucial for policy

discussions. Previous studies on supplier-induced demand (Gruber and Owings, 1996;

Ikegami et al., 2021), which emphasize the income effect as the driver of care provision

under loose capacity constraints, would imply that lowering occupancy may induce

wasteful care provision. In contrast, if the cost effect is a key driver, then relaxing

capacity constraints can increase valuable care provision.

We then discuss the efficiency implications of occupancy variation across facilities.

We consider two homogeneous facilities that make admission decisions while facing

different occupancy rates due to idiosyncratic shocks, such as emergency admissions,

patient deaths, spatial and information frictions, and staff shortages. The model

predicts that aggregate admissions will increase if patients at the more occupied

facility is moved to the less occupied one. Thus, an occupancy-smoothing policy is

useful to achieve efficient provision of care.

To test the theoretical predictions, we need exogenous shocks to the occupancy

rate. A regression of admissions on occupancy does not necessarily yield the causal

effect of occupancy, because occupancy may be affected by unobserved quality or oper-

ational efficiencies that also affect admissions. We address this problem by exploiting

patient deaths as exogenous occupancy shocks.3 The identification assumptions are

that the exact timing of patient deaths (but not necessarily the longer-run volume

of deaths) is exogenous to confounding factors related to the facility’s daily admis-

sion/discharge decisions and other patients’ preferences, and that patient deaths affect

admissions and live discharges only via occupancy. These assumptions are plausible

in our setting because (i) nursing facilities do not have advanced technologies to ma-

nipulate the timing of patient deaths, (ii) applicants or in-facility patients are unlikely

3People’s deaths have been exploited as an exogenous variation in several settings, such as fatal
shocks to family members (Fadlon and Nielsen, 2021), worker or executive exit from a firm (Jäger and
Heining, 2019; Sauvagnat and Schivardi, 2023), entrepreneur exit from a start-up company (Becker
and Hvide, 2022), changes in collaborative networks of inventors (Jaravel et al., 2018), changes in
national leaders (Jones and Olken, 2005), and changes in academic co-authorship (Azoulay et al.,
2010).
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to respond quickly to daily patient deaths, and (iii) the extra work for facilities due

to deaths seems irrelevant. We also show the absence of a pre-trend in admissions or

discharges in an event study design.

We empirically test the above theoretical predictions in the context of Japanese

nursing facilities for rehabilitation and transitional care, similar to skilled nursing

facilities (SNFs) in the US. Japan has the highest rate of population aging in the

world (United Nations, 2019), and nursing facilities play an important role in the

long-term care of the elderly. The high demand for institutional care is reflected in

high occupancy rates, which creates a congestion problem because staffing cannot be

adjusted flexibly. The simple reimbursement system based on a per-diem payment

adjusted to care needs allows us to focus on bed management decisions rather than

the content of care, without much concern about facilities picking profitable patients.

Using facility-by-date panel data on bed occupancy and the number of admissions,

discharges, and deaths, we first implement an event study design to examine the

effect of death-induced occupancy declines on admissions and discharges, investigating

detailed dynamic effects. We then estimate regressions of weekly/monthly/quarterly

admissions and discharges on daily occupancy, using patient deaths as an instrumental

variable (IV).

We find that patient deaths immediately increase subsequent admissions, whereas

they have a much weaker effect on live discharges. Admissions increase as early

as the day after patient deaths, and the increase persists for over a month. The IV

regressions imply that a 1pp decrease in the daily occupancy rate increases admissions

by 0.64pp and decreases discharges by 0.21pp over the next 12 weeks, implying that

84% (=64%+21%, with rounding) of the vacated beds are filled. Based on our model,

the results suggest that both admissions and discharges are frictional, with discharge

frictions being much greater. In addition, the admission responses to a 1pp occupancy

reduction is greater at higher occupancy levels, suggesting that the cost effect rather

than the income effect is the main driver of the responses. Our baseline estimates

imply that at least 72.4% of the 1-week admission response at baseline occupancy

strictly between 95% and 100% is explained by the cost effect (0.21pp out of 0.29pp).

We find similar patterns when we instrument for the baseline occupancy level, in

addition to the local occupancy variation around the baseline. Also, the response size
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increases with baseline occupancy broadly, not just near 100%, suggesting that some

fraction of the response is due to increasing marginal costs rather than the mechanical

effect of binding capacity constraints.

Our estimates suggest that aggregate admission can be substantially increased by

reallocating patients to smooth occupancy across facilities, a policy tool potentially

useful in markets where capacity investment is regulated or otherwise difficult to

adjust in the short run. Our most conservative estimate implies that marginally

smoothing occupancy by moving a patient from the most occupied facility to the

least occupied facility within each city-fiscal year-facility size bin leads to a 6.6%

increase in the total 4-week admissions of the intervened facilities. To the extent that

the dispersion in occupancy is not explained by facility heterogeneity, the dispersion

is indicative of spatial misallocation of patients.

This study relates to the growing literature on the effect of occupancy on ad-

mission and discharge decisions. Provider incentives for selective admissions have

been studied in various settings such as nursing facilities (He and Konetzka, 2015;

Gandhi, 2023; Corredor-Waldron, 2022), inpatient wards (Dong et al., 2020), ICUs

(Kim et al., 2015), NICUs (Freedman, 2016), and neurology wards (Samiedaluie et al.,

2017). Hackmann et al. (2024) find that Medicaid patients (less profitable than pri-

vately funded patients) are more likely to be discharged from SNFs when occupancy

is higher. We contribute to the literature by conceptualizing and examining the mech-

anisms by which occupancy affects admissions and discharges. In particular, unlike

previous studies which emphasize financial incentives,4 we show that capacity con-

straints can be a key mechanism in our context. We also show that the OLS estimate

of the regression of admissions on occupancy is biased upward relative to the IV esti-

mate, suggesting the importance of accounting for endogeneity. Finally, unlike most

previous studies, we discuss the market (in)efficiency of the variation in occupancy

across providers.

This study also contributes to the literature on the effect of policies on access

to health care. The relationship between provider incentives and healthcare access

has been studied extensively in the context of the US Medicaid, a public insurance

program for low-income population (Baker and Royalty, 2000; Decker, 2007, 2009;

4See, e.g., Evans (1974), Gruber and Owings (1996), Freedman (2016) and Ikegami et al. (2021).
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Buchmueller et al., 2015; Gandhi, 2023; Alexander and Schnell, 2024; Cabral et al.,

2024). Previous studies have focused on increasing provider payments (Alexander and

Schnell, 2024) or expanding capacity (Gandhi, 2023) as tools to improve access. Our

contribution is to document heterogeneous responses across differentially constrained

facilities and to show that smoothing occupancy can improve overall access to facil-

ities. Given the high costs of paying providers or expanding capacity, coordinating

capacity utilization could be a useful policy tool to improve access to care.

Finally, this study contributes to the broad literature on how demand fluctuations

affect market efficiency in the presence of capacity constraints (Baker et al., 2004;

Collard-Wexler, 2013; Butters, 2020; Shurtz et al., 2022; Boehm and Pandalai-Nayar,

2022; Ilzetzki, 2024), or adjustment or matching frictions (see Gavazza and Lizzeri,

2021, for a review). Collard-Wexler (2013) simulates that smoothing demand fluctua-

tions for ready-mix concrete expands the market due to congestion costs for delivering

concrete. Butters (2020) finds that variation in demand volatility explains a large frac-

tion of variation in hotel occupancy rates, and that eliminating the demand volatility

would increase productivity. Researchers have studied how aggregate production in

the manufacturing sector is affected by micro-level capacity constraints (Boehm and

Pandalai-Nayar, 2022) or (factor) misallocation (Hsieh and Klenow, 2009). Another

strand of research (e.g., Fréchette et al., 2019) has shown that short-run demand fluc-

tuations can have important efficiency consequences in frictional markets. Our work

extends these lines of research to the healthcare sector.5

This paper is organized as follows. Section 2 provides institutional background

on our empirical analysis. In Section 3, we present a conceptual framework. Section

4 describes our data. Section 5 presents the empirical strategy. Section 6 reports the

estimation results. In Section 7, we discuss the implications of our results. Section 8

concludes.

5Our framework can potentially be modifiable to apply to other industries with partially altruistic
providers, such as hospitals, childcare facilities, and schools.
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2 Institutional Background

2.1 Nursing Facility Industry in Japan

We study nursing facilities in Japan, which are financed by the public long-term care

insurance (LTCI). Japan’s LTCI is a social insurance program for people over the

age of 65 who require long-term care (LTC) services. Eligibility for LTCI benefits is

determined by an in-person health examination. The health examination evaluates

the applicant’s physical and mental disabilities and calculates a health score that

indicates the applicant’s level of care needs. Applicants are eligible for LTCI benefits

if their health score is above a minimum threshold. Eligible LTCI beneficiaries can

use various LTC services, including both home and institutional care, at a coinsurance

rate. Because of the rapid aging of the population, public spending on LTCI continues

to increase. The total annual cost of LTCI was 11.5 trillion JPY in fiscal 2023

(1.94% of Japan’s nominal GDP) (Ministry of Health, Labor and Welfare, 2023b).

Institutional care, including nursing facilities, accounts for about one-third of total

costs.

We focus on a type of nursing facilities called Geriatric Health Services Facilities

(GHSFs).6 Their primary goal is to provide high-quality inpatient rehabilitation and

transitional care to LTCI beneficiaries and to restore their physical abilities to the

point where they can live at home or in the community.7 Thus, they are similar

in their mission to the U.S. Skilled Nursing Facilities (SNFs). Unlike most SNFs,

however, GHSFs are non-profit organizations: they may earn a profit to keep their

facilities afloat and fulfill their public purpose, but they are not allowed to distribute

the profit to shareholders or other parties. The establishment of a GHSF and changes

to its bed capacity require the approval of the prefectural governor. As of April 2022,

there were 4,230 GHSFs nationwide, with approximately 355,900 patients admitted

(Ministry of Health, Labor and Welfare, 2023a).

GHSFs provide care for two types of patients. “Long-stay” patients are admit-

ted to the facility for rehabilitative care to return to the community. “Short-stay”

patients, on the other hand, visit GHSFs to receive temporary assisted living ser-

6They are called “Kaigo Roujin Hoken Shisetsu” or “Roken” for short in Japanese.
7GHSFs’ motto is to “improve the user’s function to enable them to go back home” (Japan

Association of Geriatric Health Services Facilities, 2015).
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vices, typically for a respite or temporary unavailability of family caregivers. Stay

types are identified by claims items rather than by length of stay. In our empirical

analysis, we primarily focus on the admissions and live discharges of the long-stay pa-

tients, because short-stay admissions and discharges are more likely to be influenced

by exogenous factors.8

A variety of healthcare professionals work in GHSFs to provide appropriate care,

including physicians, nurses, caregivers, physiotherapists, and social workers. The

supply of care workers is not keeping pace with the increasing demand for care due

to the rapid aging of the population. As a result, nursing facilities, including GHSFs,

are facing shortages of care workers. According to Care Work Foundation (2016),

62.6% of facilities reported being understaffed, and 73.1% of the understaffed facilities

reported recruitment difficulties as the main reason for staff shortages.9

2.2 Admission, Treatment, and Discharge

To be admitted to a GHSF, LTCI beneficiaries must apply for admission to the facility,

in consultation with physicians and social workers, and must meet several conditions.

Upon receipt of the application, the facility interviews the applicant to ascertain their

physical condition, living arrangements, and medical needs. Because GHSFs cannot

provide acute medical care, patients must be in a stable condition. The facility decides

whether to admit the patient based on the interview and documentation, such as a

medical certificate.

GHSFs provide rehabilitative care according to each patient’s care plan. In the

early stages of inpatient care, a care plan is developed based on the patient’s goals.

The care plan is reviewed periodically as treatment progresses.

When a patient is ready for discharge, the facility plans their discharge in consul-

tation with the patient and their family. They work together to prepare the patient’s

8Many short stays are due to a planned absence of a family caregiver, the timing of which is
likely to be fixed in advance, while many others are due to a family caregiver’s emergency, in which
case facilities will find it difficult to reject the application (Ministry of Health, Labor and Welfare,
2017). The timing of short-stay discharges is also influenced by the restrictions on the lengths of
short stays.

9Low wages (57.3%) and demanding jobs (49.6%) were major cited reasons for recruitment dif-
ficulties. Because revenue from services is capped by government-set reimbursement rates, facilities
do not have the flexibility to raise wages by increasing service prices.
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post-discharge living environment, including the LTC services to be used at home.

Patients who wish to live outside the current facility are discharged either to their

home or to a nursing home where they can remain for the rest of their lives. If pa-

tients require acute care, they may be transferred to a hospital or, depending on their

medical condition, to another GHSF.

GHSFs also provide end-of-life care for patients who choose to spend their final

days in the facility. End-of-life care is provided to relieve pain, suffering, and stress

for patients so that they can maintain human dignity until the end of life. End-of-life

care at GHSFs includes pain relief through medication, prevention of bedsores, and

psychological care to reduce anxiety and fear.

2.3 Reimbursement Policy

Reimbursement for GHSFs depends on the beneficiaries’ care needs. Beneficiaries are

assigned to one of seven groups based on the health score mentioned in Section 2.1.

The groups consist of support levels 1 and 2, and care levels 1–5 in ascending order of

care-needs levels (i.e., care level 5 means the highest needs). Table A1 in Appendix

A describes the general health status for each care level. Only recipients classified as

care level 1–5 may be admitted to a GHSF.

GHSF reimbursement consists of two components: a per-diem fixed payment and a

fee-for-service (FFS) payment. The fixed payment is paid to the facility for a patient’s

stay for one day, regardless of the content of care. To reflect the burden of care, the

amount of the per-diem payment is set higher for higher care levels. The FFS payment

is paid for specific medical procedures, such as short-term intensive rehabilitation,

dementia care, and end-of-life care. Table A2 in Appendix A shows per-diem fixed

and FFS payments by care levels, using our analysis sample described in Section

4.10 The fixed payment accounts for roughly 90% of the total reimbursement for

GHSFs for serving long-stay patients. Thus, bed occupancy is more important to the

facilities’ revenue than the content of the care provided to long-stay patients.

Summary. The Japanese GHSF is an attractive setting for empirical analysis, because

10Since we can only observe each patient’s FFS payment at the monthly level, the daily averages
of the FFS payment are calculated by dividing the patient’s total FFS payment by the number of
days in the facility. See the tablenote of Table A2 for more details.
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of its economic importance and its reimbursement system which mitigates concerns

about patient selection. The institutional characteristics also guide our modeling: (1)

The non-profit facilities may be concerned with securing profits, but not with excess

profits. They are also concerned with patient welfare. (2) The numbers of admissions

and discharges are main choice variables, not which patients or which services to

select. (3) Service delivery is negatively affected by congestion, partly due to labor

shortages.

3 Conceptual Framework

3.1 Model Setup

To guide our empirical analysis, we present an economic model of admissions and

discharges.11 A representative facility chooses the number of new patients to admit,

a, and the number of existing patients to discharge, d, to maximize its objective

function given the number of patients currently in the facility, n. We fix capacity and

express these variables as their ratio to capacity (e.g., n denotes occupancy rate).12

The payoff of the facility is given by

U (n, a, d) = V (rp)︸ ︷︷ ︸
income utility

+ bPp− CP (p)︸ ︷︷ ︸
service utility

+ bAa− CA(a)︸ ︷︷ ︸
admission utility

+ bDd− CD(d)︸ ︷︷ ︸
discharge utility

, (1)

where p = n+a−d is the occupancy rate after admissions and discharges are realized,

and r is the per-patient reimbursement net of marginal cost.

The first term represents utility from gross profit rp, converted by V which may

capture fixed costs (e.g., V (R) = R − FC). V satisfies V ′(·) > 0 and V ′′(·) ≤ 0. We

also assume V ′′′(·) ≥ 0, which is not required for the propositions below but facilitates

the interpretation of the results.13 We allow V to express loose income targeting,

11Suitably modified versions of our model will be applicable to hospitals or other industries as well.
For example, not-for-profit childcare facilities or schools may determine the number of admitting
(and perhaps graduating) children/students by considering a profit or occupancy target, capacity
constraint, and altruistic utility from service. Such decisions can possibly be expressed by a model
similar to the one below.

12The parameters in Eq.(1) must be rescaled accordingly.
13V ′′′ ≥ 0 implies that the income effect (defined below) shrinks with occupancy. It is satisfied

by most of the common candidates for V , e.g., a CARA utility function, a CRRA utility function,
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including an approximate non-negativity constraint on profit.14 A large income effect,

including literal income targeting as a limit case, is a common way to explain supplier-

induced demand (McGuire and Pauly, 1991; Gruber and Owings, 1996), and a highly

concave utility function is a way to express a large income effect (see also Camerer

et al., 1997). In our context, the non-profit facility may strongly desire to avoid

operating in the red, while it may care less about excess profit. Alternatively, it may

set a target occupancy level, and the incentive to induce demand may increase if the

occupancy rate falls below the target level.

Following the literature on non-profit organizations (Lakdawalla and Philipson,

1998; Gaynor and Vogt, 2003), we assume that the facility’s payoff depends on its

output. The second term of Eq.(1) represents the altruistic utility derived from

serving p patients. bP ≥ 0 denotes the benchmark per-patient utility from service

and CP (p) denotes a strictly convex “congestion cost” that reduces per-patient utility

as the number of patients increases. Congestion may reduce per-patient utility by

lowering service quality, e.g., by reducing the amount of time workers spend with

each patient (Shurtz et al., 2022) and other inputs. Also, CP may approximate the

capacity constraint, since admissions in excess of capacity can severely degrade the

quality of the patient experience. Finally, with an appropriate reinterpretation of r,

CP may capture the monetary cost of service that increases nonlinearly with volume.15

Increasing marginal costs can result from diminishing marginal product of inputs or

higher labor costs (e.g., higher overtime pay).

The last two terms of Eq.(1) represent the utility derived from achieving the ad-

mission and discharge missions. The facility’s mission is to provide access to quality

care for anyone in need and return them to their home. We capture the facility’s de-

sire to achieve this objective by including additional terms to the utility. bAa−CA(a)

represents the utility derived from quality-adjusted admissions, where bA ≥ 0 is the

benchmark utility per admission (in addition to bP ) and CA is weakly convex and

and V (R) = xk for k ∈ (0, 1). A nonnegative third derivative of utility function is also a common
assumption in macroeconomic consumption models, to derive the concavity of the consumption
function (e.g., Carroll and Kimball, 1996).

14E.g., V (R) = v(R−FC) for some concave v and a fixed cost FC, where v′(R) is high at R < 0
and low at R > 0.

15E.g., if V (R) = R − FC where R = rp is revenue, then the first two terms of (1) become the
sum of profit rp − CP (p) − FC and altruistic utility bP p. Alternatively, V (R) may be concave in
revenue R due to revenue targeting, with CP (p) capturing all variable costs.
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captures the reduction in quality due to higher admission volumes (e.g., poor perfor-

mance in assessing patient needs or coordinating the admission process). Similarly,

bDd − CD(d) represents the utility from quality-adjusted discharges, where bD ≥ 0

and CD is weakly convex. CA and CD may also reflect monetary cost.16

The model abstracts from two features. First, it omits the facility’s choice of care

quality to influence patient health. Instead, the facility is concerned with congestion-

dependent service quality (e.g., patient satisfaction), and it adjusts admissions and

discharges directly, taking into account their effects on service quality. In other words,

discharge in our model represents a short-run tool for managing congestion, rather

than a long-run product of care. Second, the model omits patient heterogeneity, so

that it isolates the role of occupancy from, e.g., selection incentives. To the extent

that heterogeneity is controlled for by observables (including a proxy for care needs),

our empirical results in Section 6 can be linked to the theoretical predictions below.

The facility’s decision problem is

max
a≥0,d∈[0,n]

U(n, a, d). (2)

We treat n, a and d as continuous variables. We assume that problem (2) has an

interior solution (a∗, d∗) = (a∗(n), d∗(n)) that satisfies the first-order conditions, and

that the resulting occupancy rate is also interior.

3.2 Theoretical Prediction

We examine how the admissions and discharges (a∗, d∗) respond to a decrease in

occupancy n, which can also be interpreted as an increase in capacity.17 Denote the

optimal admissions and discharges at n = n̄ by ā = a∗(n̄) and d̄ = d∗(n̄), and let

p̄ = n̄ + ā − d̄. Also, denote the marginal cost by MCg(·) for g = P,A,D, and let

MBA(p) = rV ′(rp) + bP + bA denote the marginal benefit of admission. We simplify

by assuming that the admission and discharge cost functions are weakly quadratic:

MCA(a) = κA
1 + κA

2 a and MCD(d) = κD
1 + κD

2 d, with κA
1 , κ

A
2 , κ

D
1 , κ

D
2 ≥ 0. No

16Admission cost may reflect the cost of assessing patients’ needs, coordinating the admission
process, and moving patients to the facility. Discharge cost may consist of similar factors. These
costs are likely to increase more rapidly as the volume increases, for example, due to higher labor
costs of workers in charge of discharges.

17Here, “capacity” consists of both equipment (e.g., beds) and staffing.
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assumption is imposed on MCP or MBA, except that MBA is weakly decreasing and

MCP is strictly increasing.18

Proposition 1. (Frictional Responses) Suppose κA
2 > 0 and κD

2 > 0. Then, for

any n̄ ∈ (0, 1), the following statements hold at n = n̄.

(i) (Responses to exogenous discharges)

(a) −∂a∗

∂n
> 0 and −∂d∗

∂n
< 0.

(b) Holding MCA(ā) and MCD(d̄) constant,
∣∣∂a∗
∂n

∣∣ decreases in κA
2 and in-

creases in κD
2 , and

∣∣∂d∗
∂n

∣∣ decreases in κD
2 and increases in κA

2 .

(ii) (Imperfect adjustment) −∂a∗

∂n
−
(
−∂d∗

∂n

)
∈ (0, 1).

(iii) (Covariation with occupancy) −∂2a∗

∂n2 > (<) 0 and ∂2d∗

∂n2 > (<) 0 hold if MCP ′′(p̄) >

(<) MBA′′(p̄).

Proposition 2. (Frictionless Responses) Suppose κA
2 = 0 or κD

2 = 0. Then, for

any n̄ ∈ (0, 1), −∂a∗

∂n
−

(
−∂d∗

∂n

)
= 1 at n = n̄. Moreover:

(i) If κA
2 > 0 and κD

2 = 0, then −∂a∗

∂n
= 0 and −∂d∗

∂n
= −1.

(ii) If κA
2 = 0 and κD

2 > 0, then −∂a∗

∂n
= 1 and −∂d∗

∂n
= 0.

Proofs are in Appendix B. Proposition 1-(i) states that admissions increase and

discharges decrease as the occupancy rate n decreases. We show in Appendix B that

the admission response can be expressed as

− ∂a∗

∂n

∣∣∣∣
n=n̄

= − κD
2

DJF (ā, d̄; n̄)
MBA′(p̄)︸ ︷︷ ︸

income effect≥0

+
κD
2

DJF (ā, d̄; n̄)
MCP ′(p̄)︸ ︷︷ ︸

cost effect>0

(3)

where MBA′(p̄) = r2V ′′(rp̄) ≤ 0 and DJF (ā, d̄; n̄) is a positive term that depends

on κA
2 and other parameters. The first term represents an income effect, whereby a

decrease in occupancy induces the facility to increase admissions in order to compen-

sate for the lost income. The second term represents a cost effect, whereby a decrease

18The conclusions of Propositions 1 and 2 hold under much weaker conditions: they hold if
−V ′′(rp̄), CP ′′(p̄) ≥ 0 and at least one is positive. If both are zero (e.g., V and CP are linear), the
optimal admissions and discharges are invariant to occupancy around n = n̄.
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in occupancy reduces the marginal cost of service and allows the facility to admit

more patients. Proposition 1-(i) also shows that, holding marginal costs constant

(hence holding a∗ and d∗ constant), the response of admission (discharge) to occu-

pancy shocks is larger when the adjustment of admission is less (more) “frictional”

than the adjustment of discharge, in the sense that the marginal cost of admission

(discharge) does not increase fast or the marginal cost of discharge (admission) rises

rapidly.19 This is because the facility attempts to adjust occupancy in the less costly

way.

Next, Proposition 1-(ii) states that empty beds created by an exogenous occupancy

reduction are not fully filled if both admission and discharge adjustments are frictional

in the sense that κA
2 , κ

D
2 > 0. The difference

(
−∂a∗

∂n

)
−

(
−∂d∗

∂n

)
represents the extent

to which the occupancy reduction is offset by increased admissions and decreased

discharges. The difference is less than one, indicating imperfect adjustment. This

in turn suggests that the response may be dynamic in a repeated decision setting:

the empty beds are only partially filled each period, leaving room for adjustment in

future periods.

Crucially, Proposition 1-(iii) shows how the magnitude of the admission and dis-

charge responses to occupancy shocks varies with occupancy. Eq.(3) shows that

MCP ′′ > 0 governs the variation in the cost effect and MBA′′ ≥ 0 governs the vari-

ation in the income effect. The cost effect increases as occupancy increases, making

the magnitude of the admission response larger at higher occupancy rates. In con-

trast, the income effect decreases as occupancy increases (recall MBA′ ≤ 0), making

the magnitude of the response smaller at higher occupancy rates. Intuitively, with

a negative occupancy shock, the incentive to admit more patients due to reduced

capacity constraints is greater when the facility is more occupied, while the incentive

to admit extra patients for higher income is greater when it is less occupied. If the

former mechanism dominates the latter, then the magnitude of the response increases

with occupancy ( ∂
∂n

∣∣∂a∗
∂n

∣∣ > 0), and it decreases with occupancy otherwise.20

19Precisely speaking, the admission and discharge costs shape the costs of adjusting occupancy.
We stick to the term “admission/discharge frictions” for convenience.

20With general MCA and MCD, the signs of ∂
∂n

∣∣∣∂a∗

∂n

∣∣∣ and ∂
∂n

∣∣∣∂d∗

∂n

∣∣∣ are not solely determined

by MCP ′′ and MBA′′. Even in such cases, the size of admission and discharge responses increases
(decreases) with n if MCP ′′ is sufficiently larger (smaller) than MBA′′.
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Although Proposition 1-(iii) concerns whether the variation in the cost effect or

the income effect mainly explains the variation in the admission/discharge responses,

the results can be used to bound the levels of the responses attributable to each effect,

at a given n. To illustrate, we first note that DJF in Eq.(3) strictly increases with

n, and thus the level of the income effect strictly decreases with n, if −∂2a∗

∂n2 > 0 and
∂2d∗

∂n2 > 0.21 Now, suppose, e.g., that the admission response to a 1pp decrease in

occupancy is 0.4pp at n = 0.5 and 0.7pp at n = 0.9. If we assume that the income

effect explains 0.2pp (50%) of the response at n = 0.5, then the income effect at

n = 0.9 is in [0pp, 0.2pp), so the cost effect at n = 0.9 is in (0.5pp, 0.7pp]. Without

such an assumption on the income effect at n = 0.5, we still know that its upper

bound is the entire response, 0.4pp, so the cost effect (income effect) at n = 0.9 is

larger than 0.3pp (smaller than 0.4pp). This approach is useful when, e.g., we discuss

the value of the admission responses by examining the fraction of induced demand in

them.

Proposition 2 gives predictions for “frictionless” cases. Specifically, if the marginal

cost of admission or discharge is constant, then the facility perfectly adjusts its occu-

pancy in response to a decrease in occupancy (−∂a∗

∂n
−
(
−∂d∗

∂n

)
= 1). Moreover, if the

marginal cost of admission (discharge) increases while that of discharge (admission)

does not, then the response is driven solely by discharges (admissions), the less costly

means of adjusting occupancy.

3.3 Optimality of Occupancy Smoothing

Now, consider a situation where there are multiple facilities, as in the real world. If

the cost effect is a more important driver of admission responses than the income

effect, then Proposition 1-(iii) implies that smoothing occupancy between homoge-

neous facilities will increase total admissions. This is because the admission function

is concave in occupancy. In Appendix C, we formalize this intuition by extending

the above model to a two-facility setting. We assume that two homogeneous facilities

1 and 2, with possibly different occupancy rates nj (j = 1, 2), make an admission

decision aj, and we examine how total admissions depend on the distribution of oc-

21See Appendix B. Without this property, we know that the fraction of the income effect among
the response strictly decreases with n, which is useful for bounding exercises such as below.
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cupancy. Variation in nj can arise from idiosyncratic payoff and occupancy shocks,

such as emergency admissions, deaths, spatial or information frictions, and staffing

shortages.22

We suppose that the government can reallocate N = n1 + n2 patients to facility

1 or 2 before the facilities make an admission decision. The government is concerned

with total access to care, or the quantity of service production, given by A(n1;N) =

n1 + a∗1(n1) + n2 + a∗2(n2) = N + a∗1(n1) + a∗2(N − n1), where a∗j(nj) is facility j’s

optimal admission given occupancy nj.

Proposition 3 in Appendix C shows that, given the number of initial in-facility

patients N , an occupancy-smoothing policy that moves patients from the more con-

gested facility to the less congested facility increases aggregate access to care. Thus,

aggregate access is maximized by setting n1 = n2 = N/2.

Note that this result describes a static or short-run effect. In a dynamic setting,

occupancy may converge to a steady-state level even in the absence of reallocation. In

such a case, reallocation can still improve short-run admissions as long as the direct

effect on current admissions dominates the indirect effect on future admissions due

to changes in future occupancy rates.

A caveat to using the above framework in data analysis is that it assumes away

persistent heterogeneity across facilities. Even if higher occupancy leads to fewer ad-

missions within the same facility, higher-occupancy facilities may admit more patients

than lower-occupancy facilities due to unobserved heterogeneity in quality or oper-

ational efficiency. In what follows, we combine the above framework with empirical

approaches to account for heterogeneity.

22If a facility cannot completely refuse emergency admissions at will after making the initial
admission decision, this will shift its occupancy upward. If a facility faces increased demand because
of a temporary improvement in transportation access or awareness, it may shift the admission cost
downward. A temporary staffing shortage may shift both the service cost and the admission cost
upward.
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4 Data

4.1 Data Sources and Sample Selection

The primary data source is LTCI claims data. The sample period is from April 2011

to March 2018.23 The claims data contain information on each LTCI beneficiary’s

monthly use of LTC services, including both home-based care and facility care. We

also observe individual characteristics such as age, gender, care level, and coinsurance

rate. The data also provide admission dates for all patients, and the discharge date

and destination for those who are discharged in our sample period. If a patient

dies in a facility, the discharge destination is recorded as death. We also use the

Survey of Long-Term Care Service Facilities to obtain annual information on the

characteristics of each GHSF, such as the number of beds. Combining these datasets,

we construct a facility-by-date panel data on the number of in-facility patients, deaths,

and admissions and discharges for each facility-date. Based on the number of beds

and patients, we can calculate the daily bed occupancy rate for each facility.

The sample for our analysis is selected as follows. First, we exclude facilities

with a specialized dementia unit because we cannot observe whether patients are

admitted to regular or dementia units, making it difficult to identify the relevant

congestion measure. We also exclude facilities whose maximum occupancy rate falls

in the bottom or top 1 percentile of the distribution of maximum occupancy across

providers. We impose the former restriction to eliminate providers that are always

empty, while we impose the latter restriction to exclude occupancy outliers that may

be mismeasured.24

4.2 Summary Statistics

Table 1 shows summary statistics for our main sample at facility-date level. The

average number of beds is 83, with most facilities having a capacity between 50 and

100. On average, a facility employs 0.72 full-time equivalent physicians and 8.96 full-

23In Japan, a fiscal year begins on April 1 and ends on March 31.
24Our main results are unchanged when we remove the sample restrictions based on the maximum

occupancy rate. See Figure A4 and Table A4 in Appendix A.
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Table 1: Summary Statistics

Mean SD p10 p90
(1) (2) (3) (4)

Facility-date (Obs. = 6,759,473, #Facilities = 3,073)

Capacity 83.44 30.45 48 100

Physician (Full-time equivalent) 0.72 0.56 0 1

Nurse (Full-time equivalent) 8.96 3.76 5 13

Occupancy rate (pp) 76.73 30.20 12.86 98.15

Care level 1 8.11 6.77 0 17.14

Care level 2 13.74 8.21 1.25 24.00

Care level 3 17.72 9.11 2.50 28.00

Care level 4 20.27 10.25 3.00 32.00

Care level 5 15.70 11.77 2.00 30.00

Number of admissions 0.47 0.85 0 2

Short stay 0.27 0.65 0 1

Long stay 0.20 0.47 0 1

Number of discharges 0.47 0.85 0 2

Short stay 0.27 0.65 0 1

Long stay 0.19 0.49 0 2

Home 0.04 0.21 0 0

Hospital 0.07 0.27 0 0

Death 0.01 0.12 0 0

Notes: The table presents summary statistics for the facility-date panel. The last two
columns present 10th and 90th percentiles. The occupancy rate (overall and by care levels)
is the number of patients in the category divided by the capacity, expressed in pp. The other
variables are expressed in level.

time equivalent nurses.25 The average occupancy rate is 77%, and the breakdown by

care levels shows that the main patients in GHSFs are those in care levels 3-5 with

high care needs. The average number of daily long-stay admissions and discharges is

about 0.2, which means that one long-stay patient is newly admitted or discharged

every 5 days.

Figure 1 shows the histogram of occupancy rates in our analysis sample. Occu-

25Since GHSFs are required to have a physician, facilities that do not employ a full-time physician
employ a part-time physician.
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Figure 1: Distribution of Occupancy Rates
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Notes: Figure 1 shows the histogram of occupancy rates in our analysis sample.

pancy is mostly concentrated in the range of 80-100%. A small number of observa-

tions have occupancy rates higher than one, possibly due to the temporary use of a

makeshift bed, although the reimbursement rate is reduced if such excess utilization

persists for a period of time.

Figure 2 shows the binscatter of the patient-to-nurse ratio against occupancy rate,

using facility-fiscal year observations.26 The average number of patients per nurse is

just over 8 at 80% occupancy, and it rises to about 9.5 as occupancy approaches

100%. This suggests that nurse staffing does not adjust to maintain the patient-to-

nurse ratio, implying less nurse time per patient at higher occupancy rates.

5 Empirical Strategy

5.1 Effect of Occupancy on Admissions and Discharges

A naive way to test the predictions of Propositions 1 and 2 is to regress admissions and

discharges on occupancy rate and examine its coefficients. However, this approach

suffers from endogeneity because occupancy may be affected by facilities’ unobserved

quality or operational efficiencies that also affect admissions/discharges. We address

this problem by exploiting patient deaths. When a patient dies in a facility, she is

26For ease of viewing, the plot uses only observations with at least 50% occupancy.
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Figure 2: Occupancy and Patient-to-Nurse Ratio
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Notes: Figure 2 shows the binscatter of the patient-to-nurse ratio versus occupancy rate, using

facility-fiscal year observations with at least 50% occupancy. The number of nurses is calculated by

counting full-time equivalent nurses.

discharged from the facility, which reduces occupancy. The key assumption is that the

timing of patient deaths is unrelated to the preferences of live patients and exogenous

to facility decisions.

5.1.1 Event Study

We first use an event study regression to examine the timing of the response, in

particular whether the facilities respond immediately to occupancy shocks. It also

allows us to test for the presence of a pre-trend in admissions/discharges, which would

likely indicate a violation of our identification assumption.

Specifically, we estimate the following regression:

Yjt =
84∑

k=−84

βkDeathsjt−k + λ′Xjt + γjy + γt + εjt, (4)

where Yjt denotes the number of admissions or live discharges of long-stay patients

in facility j on date t. Deathsjt denotes the number of patients who died on date t

in facility j. To normalize the scale of admissions and discharges across facilities, we

divide these variables by the number of beds in the facility. Thus, they are measured

as a percentage point (pp) change in occupancy. The parameter of interest is βk,
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which represents the “effect” of patient deaths on the number of admissions or live

discharges k days before (k ≤ 0) or after (k > 0) the death event.27 We estimate

βk from 84 days (12 weeks) before and after patient deaths. The regression model

includes fiscal year-specific facility fixed effects γjy and date fixed effects γt. Control

variablesXjt include average age, female ratio, the share of patients whose coinsurance

rate is strictly above 10% (indicating relatively high income), average care levels, and

the share of patients receiving terminal care in facility j on date t. Standard errors

are clustered at the municipality level because each municipality is an insurer of LTCI

and error terms may be correlated within insurers.

Regression (4) can be provided with a theoretical foundation using the framework

in Section 3, under additional assumptions. Suppose (i) the admission/discharge

functions are linear (at least locally): Yjt = αj + αt + αY njt, where Y denotes a

(admission) or d (discharge), and (ii) occupancy evolves as njt+1 = njt+ajt−djt−∆jt

where ∆ denotes deaths. Then, successively substituting njt yields Yjt as a function

of the lags of ∆ and a residual. Adding leads of deaths (for pre-trend analysis) and

decomposing the residual using controls and fixed effects yields Eq.(4). Proposition

1 yields testable implications for the regression parameters: for k > 0, (a) βk ∈ (0, 1)

for admissions, (b) βk ∈ (−1, 0) for discharges, and (c) |βk| decreases with k.

5.1.2 Instrumental Variables Estimation

In the main analysis, we conduct instrumental variables (IV) regressions of admissions

and discharges, using patient deaths as an IV for occupancy rate. The effect of

occupancy rate on admissions and discharges is specified as:

Yjw(t) = βOCjt + λ′Xjt + γjy + γt + εjt, (5)

where Yjw(t) denotes the number of admissions or live discharges (in pp) of facility j in

the week(s) w(t) following date t.28 We mainly examine the outcomes in the first one

or four week(s) following t, though we also show baseline results for up to 12 weeks.

OCjt denotes the occupancy rate of facility j at the beginning of date t, before the

27Because multiple patients may die in a day, our specification corresponds to an event study
design for multiple events with different intensity (Schmidheiny and Siegloch, 2023).

28For example, Yjw(t) may represent the number of admissions during day t through t + 6 (one
week) or admissions during day t through t+ 27 (four weeks).
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facility admits or discharges patients. The parameter of interest, β, denotes the effect

of a 1 pp increase in occupancy on outcomes. This allows us to investigate how the

frictions in adjusting admissions and discharges differ and how they vary over different

time horizons (Propositions 1-(i)(ii) and 2). We control for the average number of

deaths in the four weeks prior to the date (to capture heterogeneous mortality trends),

as well as control variables included in the event study.

The first-stage regression is

OCjt = αDeathsjt−1 + λ̃′Xjt + γ̃jy + γ̃t + ε̃jt, (6)

where Deathsjt−1 denotes the number of patient deaths (in pp) on date t− 1.

5.1.3 Effects by Baseline Occupancy

Proposition 1-(iii) states that if variation in the cost effect (income effect) is the main

driver of variation in admission/discharge responses to occupancy shocks, then the

responses will be more (less) intense at higher occupancy rates. We test this prediction

by estimating Eq. (5) separately at different occupancy levels (below 85%, 85-90%,

90-95%, and above 95%) and comparing responses across groups. This exercise is

conceptually similar to regressing − ∂a
∂n

on n to examine the sign of ∂
∂n

(
− ∂a

∂n

)
.

However, there are two concerns. First, the comparison of admission responses

across occupancy levels may be confounded by heterogeneity that causes both higher

baseline occupancy and larger admission responses, rather than by differential con-

gestion. For example, higher-quality facilities may have both higher occupancy and

larger responses, because many patients have decided or are ready to be admitted.

Therefore, we also conduct an alternative regression analysis that exploits an ar-

guably exogenous variation in baseline occupancy levels. Specifically, we estimate the

following regression model:

Yjw(t) = β1OCjt + β2OCjt × I {OCjt ≥ Lo}+ λ′Xjt + γjy + γt + εjt, (7)

where Lo is an occupancy cutoff. As IVs, we use Deathsjt−1 and Deathsjt−1 ×
TotalDeathsjt−1, where TotalDeathsjt−1 denotes the total number of deaths in the
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K weeks preceding day t − 1.29 β2 measures how the magnitude of the admission

response to occupancy changes when a facility is exogenously assigned to a higher

baseline occupancy level. The identification idea is that deaths prior to day t − 1

affect the baseline occupancy on day t− 1 without shifting demand on day t− 1, at

least if we focus on a relatively short period prior to t− 1.

Second, facilities may differ in what they consider to be high occupancy, e.g.,

due to heterogeneous cost functions. In such a case, a comparison across occupancy

levels may reflect heterogeneity other than congestion. To address this concern, we

implement an alternative classification of occupancy groups. Specifically, we compute

facility-specific quartiles of occupancy and then classify observations into the following

groups: below 25th percentile, 25-50th percentile, 50-75th percentile, and above 75th

percentile. This allows us to examine how admission responses differ when baseline

occupancy becomes high relative to each facility’s standard.30

5.2 Identification Concerns

The key identification assumption for Eq. (4) and (5) is that the timing of patient

deaths is exogenous to confounding factors that affect admissions or discharges. Be-

cause we control for fiscal year-specific facility fixed effects and date fixed effects, our

estimates are unaffected by different admission tendencies across facilities or time-

specific shocks to demand for in-facility care. In addition, patients are unlikely to

respond quickly to short-run fluctuations in occupancy, in part because information

on patient deaths is difficult to collect, while longer-term trends in occupancy are

captured by provider-by-fiscal year fixed effects. The exclusion of short-run occu-

pancy from patient preferences is especially plausible for admissions, because of the

time lag between application and admission, which can be more than a month.

Identification can be challenged by unobserved confounders that affect both trends

in admissions/discharges and trends in patient deaths. For example, facilities may

increase admissions and skimp on necessary care, both motivated by increasing con-

29We use Lo = 95%, 90%, 85% and K = 2 for baseline.
30In estimating separate regressions by baseline occupancy levels, fixed effects account for hetero-

geneity in facilities’ “standard” occupancy within each occupancy group, but they do not account
for heterogeneity related to facilities’ assignment to occupancy groups. Regression by occupancy
percentiles will mitigate the latter problem, by exploiting variation in assignment to facility-specific
high vs. low occupancy groups.
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cerns about profits. We investigate this possibility by testing for a common pre-trend

in the number of admissions or discharges between facility-dates that face patient

deaths and those that do not. We also note that our estimation exploits variation in

deaths residualized by covariates, including the share of patients receiving terminal

care and the number of deaths in the previous month, as well as fixed effects. The

residual variation in deaths is likely to be exogenous and unexpected, at least at the

daily level.

Another concern in estimating Eq.(5) is that patient deaths may directly affect ad-

missions and discharges, violating the exclusion restriction. For example, the deaths

may cause live patients to avoid admission or to seek sooner discharge because they

signal the poor quality of the facility. Such effects are likely to be negligible for ad-

missions, because it is difficult for applicants to gather information about the daily

deaths of in-facility patients. Patients are also unlikely to hasten discharge in response

to death events, especially in the short run, because discharge requires advance plan-

ning. It is also unlikely that patients update their beliefs about facility quality based

on daily (not long-run aggregate) deaths residualized by detailed covariates and fixed

effects. Alternatively, deaths may create extra work, inducing facilities to reduce

workload by deferring new admissions or expediting discharges. This is unlikely be-

cause the outcomes are admissions/discharges after dead patients’ discharges and

associated work have already been completed. In Section 6.1.1, we show that β̂0 in

Eq. (4), the effect of patient deaths on admissions/discharges on the same day, is

almost the same as the overall pre-trend. This result indicates that the death-related

extra work has little impact on admissions/discharges. Moreover, the direct effects

via patient preference or extra work, if any, would make our estimates conservative.

As described in Section 5.1.3, when we estimate Eq. (5) by occupancy levels,

still another concern is that assignment to different baseline occupancy levels is non-

random, due to demand shocks or cost shocks. We address these concerns by two

exercises: (i) estimate an alternative regression Eq. (7), which uses patient deaths in

the past two weeks as a source of exogenous variation in baseline occupancy,31 and

(ii) estimate Eq. (5) and (7) by facility-specific occupancy percentiles rather than

31Patient deaths in the past two weeks are more likely to be endogenous than those in the previous
day. We try patient deaths in the past week instead and obtain similar results, although the first
stage becomes weaker.
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levels, to exploit within-facility variation in assignment to high vs. low occupancy.

6 Results

6.1 Effects of Occupancy on Admissions and Discharges

6.1.1 Event Study Results

Figure 3 plots the estimates of βk in the event study regression (4), which represents

the effects of patient deaths on the number of admissions or live discharges measured

as a pp change in occupancy. The estimate for the day of patient deaths is normalized

to zero (β̂0 = 0). Figure 3a displays the results for admissions using the full sample.

The estimates before patient deaths are close to zero and show no pre-trend, support-

ing the identification assumption for the event study design. Figure 3a also shows

that admissions increase significantly immediately after patient deaths. The increase

begins on the next day of patient deaths and persists for about a month. Given the

long admission process, the immediate responses are likely driven by admissions of

patients who are ready and waiting to be admitted. Note that the estimates confirm

the implications of the theoretical framework, as described in Section 5.1.1: for k > 0,

βk ∈ (0, 1) and its magnitude decreases with k.

To eliminate the mechanical effect of binding capacity constraints, Figure 3b shows

the same regression result using observations for which capacity constraints are not

binding. It shows that even such facilities respond to patient deaths by increasing

admissions. However, the magnitude of the response is smaller than that shown

in Figure 3a, probably because the latter includes the mechanical effect of binding

capacity constraints in addition to the effects of increasing marginal costs and demand

inducement for non-binding cases.

Figures 3c and 3d show the results for live discharges using the full sample and

the sample with non-binding capacity constraints, respectively. Neither shows a pre-

trend. In contrast to admissions, the live discharges decrease after patient deaths,

but very slightly. The different responsiveness of admissions and discharges to patient

deaths can be explained by different frictions in adjusting admissions and discharges.

As described in Section 2.2, discharging a patient requires an in-advance planning,
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Figure 3: Effect of Patient Deaths on Admissions and Live Discharges
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(b) Admission (Full occupancy excluded)
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(c) Live Discharge (Whole sample)
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(d) Live Discharge (Full occupancy excluded)
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Notes: Figure 3 plots estimates of βk coefficients from Eq. (4), which is a regression of the number
of admissions or live discharges on the number of patient deaths, fiscal year by facility fixed effects,
date fixed effects, and other controls. The estimate of βk on the day of patient deaths is normalized
to zero. Standard errors are clustered at the municipality level, and dotted lines show the 95%
confidence intervals.

including consultation with the patient and their family. Flexibly changing a patient’s

planned discharge date may be difficult, and adjusting discharges is likely to be costly.

On the other hand, adjusting admissions may be less costly if there are patients who

are ready to be admitted.
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6.1.2 IV and OLS Estimates

Figure 4 plots the IV estimates of β in Eq. (5), with the sign reversed to indicate

the effect of a 1pp decrease in occupancy. For example, a 1pp decrease in daily

occupancy leads to a 0.64pp increase in admissions (blue curve) and a 0.21pp decrease

in discharges (red) of long-stay patients over the following 12 weeks, implying that

84%(=64%+21%, with rounding) of the vacated beds are filled during this period

(orange). Unlike the event study results in Figure 3, the decrease in discharges is

statistically significant, probably because the outcome is aggregated over a longer

period. The total response to a reduction in occupancy, −∂a∗

∂n
− (−∂d∗

∂n
), is positive

but less than one, consistent with the theoretical predictions for the frictional case

(Proposition 1) rather than the frictionless case (Proposition 2). Again, admission

responses are larger than discharge responses, suggesting that discharge frictions are

larger. Admission and discharge responses tend to increase over time, suggesting that

short-run adjustment is more frictional.32

Figure 5 plots the OLS and IV estimates of the coefficients on occupancy in the

regression Eq. (5). Although both (reversed) estimates are positive for admissions

and negative for discharges, the IV estimates are larger than the OLS estimates,

especially for admissions. This suggests that the OLS under-estimates the effect of

an occupancy reduction, probably because congested facilities tend to admit more

patients. This attenuation bias is reminiscent of the attenuation bias of the OLSE in

the regression of quantity on price.

6.2 Heterogeneous Effects by Occupancy Levels

We now estimate Eq. (5) separately by occupancy rates on day t−1. Figure 6a plots

the coefficients on occupancy from the regressions of 1-week, 4-week, and 12-week

admissions, for each occupancy group: below 85%, 85-90%, 90-95%, and above 95%.

To show that the result for the last group is not entirely driven by a mechanical ad-

mission responses from fully occupied facilities, we also show the results for facilities

with occupancy strictly below 1 (labeled “95-99%”). The figure suggests that the

admission responses tend to be larger at higher occupancy rates. The pattern holds

32The magnitude of responses is not monotonically increasing in weeks, because the admissions
and discharges in the “control group” change over time as well.
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Figure 4: Effect of Empty Beds on Admissions and Live Discharges Over Time
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Notes: Figure 4 plots the estimates of the coefficient on occupancy in Eq. (5) and their 95%
confidence intervals, using as outcomes long-stay admissions (blue curve), live discharges (red), and
admissions minus live discharges (orange) for the following T week(s), T = 1, ..., 12. The sign is
reversed to represent the pp effect of a 1pp reduction in occupancy. Standard errors are clustered
at the municipality level.

Figure 5: OLS vs IV Estimates of the Coefficient on Occupancy
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Notes: Figure 5 plots OLS (dotted curves) and IV (bold) estimates of the coefficient on occupancy
in Eq. (5) and their 95% confidence intervals, using as outcomes long-stay admissions (blue) and
live discharges (red) for the following T week(s), T = 1, ..., 12. The sign is reversed to represent the
pp effect of a 1pp reduction in occupancy. Standard errors are clustered at the municipality level.
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Figure 6: Effect of Empty Beds on Admissions and Live Discharges, by Occupancy
Level
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Notes: Figure 6 plots the IV estimates of the coefficient on occupancy in Eq. (5) and their 95%
confidence intervals, using as outcomes long-stay admissions (panel (a)) or live discharges (panel
(b)) for the following 1 week (blue), 4 weeks (red), and 12 weeks (orange), separately by baseline
occupancy level. The sign is reversed to represent the pp effect of a 1pp reduction in occupancy.
Standard errors are clustered at the municipality level.

whether or not we drop observations with binding capacity constraints. The increas-

ing (in occupancy) response is consistent with the cost effect being a more important

driver of variation in admission responses than the income effect. In contrast, Figure

6b shows no systematic relationship between the discharge responses and baseline

occupancy. This may be because discharges are less manipulable for capacity utiliza-

tion management, and thus less reflective of facility incentives, than admissions. The

qualitative results are similar when we group observations by occupancy percentiles

rather than levels (see Figure A1).

Note that the differences in admission responses between occupancy levels shrink

for longer-run outcomes, especially 12 weeks. This is possibly because admissions

return to the steady-state level in the long run (recall the discussion in Section 3.3).

We therefore focus on the effects on 1-week or 4-week admissions and discharges,

interpreted as short-run outcomes, in what follows.

Panel A of Table 2 presents the estimates from Eq. (7). Because there is no

systematic heterogeneity in the discharge responses across baseline occupancy levels,

we only show the results for admissions. The table shows that the positive responses
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Table 2: Effect of Empty Beds on Admissions, with Nonlinear Terms

Panel A: Estimates based on Occupancy Levels

1-Week Admission 4-Week Admission

Occupancy (decline) 0.307*** 0.291*** 0.257*** 0.614*** 0.600*** 0.573***
(0.0266) (0.0218) (0.0161) (0.0248) (0.0218) (0.0186)

Occupancy (decline) ×

I(Occupancy≥ 95pp) 0.0517*** 0.0424***
(0.0129) (0.0140)

I(Occupancy≥ 90pp) 0.0594*** 0.0487***
(0.0137) (0.0159)

I(Occupancy≥ 85pp) 0.110*** 0.0904***
(0.0270) (0.0296)

Cragg-Donald F-stats 164.0 141.4 78.05 164.0 141.4 78.05

N 6,673,744 6,673,744 6,673,744 6,673,744 6,673,744 6,673,744

Panel B: Estimates based on Percentiles of Occupancy

1-Week Admission 4-Week Admission

Occupancy (decline) 0.311*** 0.301*** 0.282*** 0.617*** 0.609*** 0.594***
(0.0263) (0.0232) (0.0202) (0.0246) (0.0225) (0.0204)

Occupancy (decline) ×

I(Occupancy≥ 75pctile) 0.0317*** 0.0260***
(0.00759) (0.00832)

I(Occupancy≥ 50pctile) 0.0291*** 0.0238***
(0.00676) (0.00759)

I(Occupancy≥ 25pctile) 0.0445*** 0.0365***
(0.0103) (0.0117)

Cragg-Donald F-stats 252.2 300.3 215.1 252.2 300.3 215.1

N 6,673,744 6,673,744 6,673,744 6,673,744 6,673,744 6,673,744

Notes: The table shows the estimates of the coefficients in the regression (7), using 1-week or 4-
week admission as the outcome and deaths in the previous 2 weeks to construct an instrument for
the interaction. The sign is reversed to represent the pp effect of a 1pp reduction in occupancy.
Standard errors clustered at the municipality level are reported in parentheses. ***p<0.01,
**p<0.05, *p<0.1.

to an occupancy reduction are larger when the baseline occupancy is higher. The

same pattern holds when we exclude observations with binding capacity constraints,

although some interactions are statistically insignificant (see Panel A of Table A3

in Appendix A). Again, the results are qualitatively similar when we use occupancy
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groups based on percentiles instead of levels (see Panel B of Tables 2/A3).

Our results are qualitatively similar when we lift the sample restriction that ex-

cludes observations with extreme values of occupancy, as mentioned in Section 4. See

Figure A4 and Table A4.33

6.3 Occupancy and Patient Selection

Next, we test for selective admissions (Gandhi, 2023) by examining whether the com-

position of admission responses differs at different occupancy levels. Figure 7 plots

the coefficients for 1-week admissions of each care level, separately by baseline occu-

pancy levels. We divide the care level-specific coefficient by the coefficient for total

admissions within each occupancy level, so that the numbers indicate the share of

the admission response accounted for by the particular care level. The figure suggests

that, although admissions of higher care levels account for a larger share, the compo-

sition does not change systematically with baseline occupancy levels. This suggests

that variation in occupancy does not induce facilities to select patients with different

care levels. This pattern also holds when we use 4-week admissions (see Figure A2).

Similarly, Figure A3 in Appendix A plots the coefficients for the 1-week or 4-

week admissions of long- vs. short-stay patients. Similar to Figure 7, the numbers

represent the share of long or short stays in the admission response. The share of

long-stay admissions in 1 week or 4 weeks increases slightly as occupancy increases

(although the increase is not significant). The larger share of long stays at higher

occupancy rates is likely because providers prefer patients who fill in their beds for

longer periods of time. All of the empirical results except Figure A3 focus on (the

more preferred) long-stay patients, so the dynamic incentive for selection along this

dimension is likely unimportant.

33The results are also similar when we instead strengthen the sample restriction, by dropping
facilities with the maximum occupancy below 50pp from our main sample (results available upon
request).
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Figure 7: Effect of Empty Beds on Admissions, By Occupancy and Care Levels
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Notes: Figure 7 plots the IV estimates of the coefficient on occupancy in Eq. (5) and their 95%
confidence intervals, using long-stay admissions for the following 1 week as the outcome, separately by
occupancy and care levels. The coefficients are divided by the coefficient in the baseline regression
that pools all care levels, so the numbers represent the share of each care level in the admission
response. Standard errors are clustered at the municipality level.

7 Discussions

7.1 Interpretations of Admission Responses

The results of the admission responses by occupancy levels are nontrivial, because

they allow us to infer the mechanisms underlying the admission responses. Specif-

ically, we interpret the positive and increasing (in baseline occupancy) admission

responses to occupancy reductions, shown in Section 6.2, as driven by variation in

the cost effect. The response pattern is unlikely to be explained by variation in the

income effect, because responses would then decrease with occupancy under plausible

utility functions for income.

The cost effect is also likely to explain a large part of the overall level of admission

responses. The discussion of Proposition 1-(iii) suggests that the income effect for

1-week admissions is at most 0.08pp (i.e., the admission response at occupancy below

85%), so the cost effect at occupancy strictly between 95% and 100% is at least 0.21pp
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(= 0.29pp − 0.08pp), or 72.4% (= 0.21
0.29

) of the total response.34 Moreover, the income

effect is likely less than 0.08pp, because demand inducement is difficult in the short

run. Thus, the cost effect will account for some part of admission responses at all

occupancy levels. Even if we use the results of 4-week admissions, for which demand

inducement is likely easier, the cost effect accounts for at least 0.30pp (= 0.61pp −
0.31pp) or 49.2% (=0.30

0.61
).

The results by occupancy levels are also informative about the mechanisms behind

the cost effect. Some portion of the cost effect is likely due to increasing marginal

costs rather than binding capacity constraints, because the latter would imply flat

admission responses except for facilities with binding capacity constraints (in contrast

to the increasing responses shown in Figure 6a). On the other hand, the 1-week

admission response for the 95-99% occupancy group is significantly smaller than the

response for the 95%+ group (Figure 6a), suggesting that binding capacity constraints

(Boehm and Pandalai-Nayar, 2022) also play some role in the response, at least in

the short run.

We infer that increasing marginal costs will explain some of the admission re-

sponses even after we account for facilities’ dynamic considerations on capacity con-

straints (Gandhi, 2023). Unlike the U.S. SNFs studied by Gandhi (2023), which

accept patients with different profitability, reimbursement in our setting is based on

a universal, care needs-adjusted system. Indeed, we find no evidence of occupancy-

induced selection on care levels (Figure 7). Length of stay, another possible dimension

of patient selection, is also not important, because we focus on long-stay patients.

They are probably preferred to short-stay patients because of their longer lengths of

stay, reducing demand uncertainty and admission/discharge costs.35

Several reasons may explain why the marginal cost of service increases with occu-

pancy. First, congestion reduces the quality of service, thereby reducing the altruistic

payoff of the facility. Lower service quality can also result from worker burnout or

management slowdowns that prevent efficient care delivery. Second, medical resources

34The bound for the income effect is even larger if we include observations with binding capacity
constraints.

35Some beds may be reserved for emergency admissions, effectively imposing capacity constraints
strictly below physical bed capacity. Note, however, that our analysis exploits within-facility varia-
tion in occupancy levels/percentiles. Thus, as long as the number of reserved beds is constant within
each facility, the admission responses at lower occupancy cannot be explained by binding capacity
constraints.
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may be allocated in order of decreasing productivity, making it costly to serve ad-

ditional patients at high occupancy rates. Third, the marginal cost of hiring and

retaining staff is likely to increase with occupancy. As occupancy increases, facili-

ties will need to pay employees overtime and at a higher rate. In addition, higher

occupancy may worsen working conditions, making additional hiring more difficult.

Figure 2 is quite consistent with some of the explanations: the patient-to-nurse ratio

(a measure of inverse quality and that of the harshness of the work environment)

tends to be higher at higher occupancy rates.

7.2 Potential Gains from Reallocation

Our results suggest that aggregate access to care (total admissions) can be improved

by smoothing occupancy across similar facilities (Proposition 3). Such a policy may

be of interest because short-run adjustment of capacity may be difficult due to regula-

tions, such as certificate of need (CON) laws, or capital adjustment frictions. Below,

we simulate a simple policy which reallocates a patient from a high-occupancy facility

to a low-occupancy facility.36

Specifically, we first define a market by a unique combination of city, fiscal year,

and facility size, where a facility’s size is defined to be large if its bed capacity is

above the city-fiscal year-specific median and it is small otherwise. We then consider

a one-time reallocation of a patient from the most occupied facility (denoted j = h) to

the least occupied facility (j = l), among facilities with occupancy rate strictly below

100%, within each market. The pair of most and least occupied facilities are selected

based on the occupancy level or occupancy percentile within the facility. Within-

market reallocation leaves patient-facility distance little affected, and it confines the

simulation to reallocation between facilities that face similar input and output mar-

kets.37 We focus on facilities with an empty bed to eliminate the mechanical effect

36Although reallocation does not change primitive parameters such as bed counts, our estimates
may be insufficient for simulation under some conditions, e.g., when admission depends on the
occupancy of competing facilities via application decisions. We assume that there is excess demand
so that facilities’ acceptance decisions are the main driver of admissions.

37To further focus on similar facilities, we drop facilities with fewer than 50 beds, before imposing
the above restrictions. We also drop (i) markets where reallocation reverses the congestion group
(i.e., facility h belongs to a lower-occupancy group than facility l after reallocation) and (ii) markets
where the capacity of facilities h and l differs by more then 20. Condition (i) is imposed to focus on
markets where reallocation does smooth occupancy. Reallocation may still reduce total admissions
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of binding capacity constraints; in this sense, our result is conservative. Also, we

consider marginal reallocation rather than perfect smoothing, because our estimates

are only marginal effects. We then compute the effect of reallocation on admissions,

using the IV regression results above. Our main analysis simulates reallocation on the

first day of each fiscal year (April 1st).38 In Appendix A, we also show the simulation

results using average occupancy at the facility-fiscal year level, rather than occupancy

on a single day, to focus on the discrepancy in occupancy over a longer term.

We measure the effect of reallocation on admissions at facility j by

∆a
j = E

[
Y admission
j | OCpost

j

]
− E

[
Y admission
j | OCpre

j

]
= βa,OCpost

j OCpost
j − βa,OCpre

j OCpre
j (8)

where βa,OC is the coefficient from admission regression Eq. (5) for facilities with

occupancy level OC, depicted in Figure 6a.39 OCpost
j (OCpre

j ) is the occupancy rate

before (after) reallocation. We also show the results using regressions by occupancy

percentiles instead of levels.

Table 3 summarizes the effects of reallocation based on occupancy level (Panel

A) and occupancy percentile (Panel B). On average, reallocation based on occupancy

levels results in a net increase in total admissions of the two intervened facilities in the

next week, which corresponds to a 1.1pp increase in occupancy, or a 29.7% increase

in total admissions.40 The effect becomes smaller when we examine four-week admis-

sions, and it becomes larger when we use estimates based on occupancy percentiles

rather than levels. The most conservative result suggests an average increase of 6.6%

in total 4-week admissions. The results are qualitatively similar when we use average

occupancy over a fiscal year rather than occupancy on the first day of a fiscal year

(see Table A5). To the extent that reallocation is simulated between homogeneous

facilities, this exercise illustrates some degree of spatial misallocation (cf. Hsieh and

Klenow, 2009) of patients, and potential efficiency gains from reallocation.

if facilities are so asymmetric in bed count that the increase in occupancy of facility l is dominantly
larger than the decrease in occupancy of facility h. Condition (ii) mitigates this concern.

38The choice of the specific day of a fiscal year is likely innocuous, because occupancy is highly
correlated within a fiscal year.

39For facilities with occupancy at or above 95%, we use the coefficient for 95-99%.
40The effect is large because even a marginal reallocation of a patient induces a large change:

recall that the average long-stay admission per day is 0.2 (Table 1).
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Table 3: Simulated Results of Reallocation

Mean Std. Dev. Median Obs.(Facility-pair)

(1) (2) (3) (4)

Panel A: Reallocation based on occupancy level

(i) Change in 1-Week Admission

Percentage point 1.11 4.63 0.07 2,048

Percentage change 29.70 124.09 1.98 2,048

(ii) Change in 4-Week Admission

Percentage point 0.98 5.34 0.13 2,048

Percentage change 6.56 35.83 0.86 2,048

Panel B: Reallocation based on occupancy percentile

(i) Change in 1-Week Admission

Percentage point 1.50 5.07 0.12 1,927

Percentage change 40.21 135.99 3.31 1,927

(ii) Change in 4-Week Admission

Percentage point 1.24 5.27 0.12 1,927

Percentage change 8.32 35.37 0.82 1,927

Notes: The table summarizes the net changes in admissions after reallocation, at the market level
(sum of ∆a

j in Eq. (8) within each market), where a market is defined by a unique combination
of city, first day of the fiscal year, and facility size (large or small). “Percentage point” shows
the effect on admissions represented as a pp change in occupancy (so the effect of 1 means a 1pp
increase). “Percentage change” shows the effect on admissions as a fraction of pre-intervention
admissions of the two intervened facilities (so the effect of 1 means a 1% increase).

7.3 Are Increased Admissions Good?

We do not directly examine whether the increased admissions due to reallocation

are valuable to the admitted patients. The discussion in Section 7.1 suggests the

importance of the cost effect in determining admissions, so the increased admissions

may be those that are valuable but would be deterred without the capacity created

by an occupancy reduction. Some results are consistent with this hypothesis. First,

the immediate increase in admissions following patient deaths, as shown in Figure 3,

suggests that the “marginal patients” (those admitted in response to a reduction in
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occupancy) are likely to come from a waiting list. In-facility care is plausibly valuable

to such waiting patients. Second, Figures 7 and A2 indicate that the marginal patients

tend to be high-needs patients for whom in-facility care may be more valuable.

This paper also abstracts from the effect of occupancy on the health outcomes

of patients already admitted, and how the outcomes are affected by occupancy-

smoothing reallocation of patients. Analyzing health effects will require major changes

to the framework of this paper. First, we will need to control for the characteristics of

individual patients, which will require a patient-level analysis rather than a facility-

level analysis. Second, the effect of daily occupancy on health outcomes will be

negligible, so we will need to study the effect of longer-run occupancy, such as the

average occupancy during an episode of stay. Finally, patient deaths are unlikely to

be a good instrument for occupancy, because they are directly correlated with health.

In a companion paper (Saruya and Takahashi, 2024), we address these issues to study

the effect of congestion on patient outcomes measured by discharge outcomes (home

discharge, hospitalization, and death), and use the estimates to simulate occupancy

smoothing. The paper finds a negative effect of occupancy on outcomes (i.e., con-

gestion leading to fewer home discharges and more hospitalizations). Moreover, it

highlights an important tradeoff between congestion and quality: more congested fa-

cilities tend to be of higher quality. Thus, occupancy-smoothing reallocation reduces

the average congestion on one hand, but it reduces the average quality on the other

hand. Still, the paper finds that such reallocation can improve patient outcomes.

8 Conclusion

Researchers and policymakers have expressed concern that excess capacity leads to

wasteful care provision, while additional capacity may be valuable if valuable care

is deterred by congestion costs and capacity constraints. We develop a framework

to evaluate the relative importance of these factors in explaining nursing facility

admission and discharge decisions. Using Japanese long-term care claims data, we find

that a reduction in occupancy from baseline leads facilities to increase admissions, and

the admission response is larger at higher baseline occupancy, consistent with capacity

constraints driving the admission response to occupancy variation. A simulation
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shows that reallocating a patient between relatively homogeneous facilities to smooth

occupancy rates can improve aggregate access to institutionalized care, suggesting

the potential importance of spatial misallocation of patients.

This study has some limitations. First, the framework is based on a static decision

by a single-agent nursing facility. Dynamics and strategic interactions are unlikely

to be highly important in our setting, due to the care needs-adjusted reimbursement

system and excess demand. Still, those factors may play some role in shaping access to

care in our setting and beyond, requiring an extension of our framework. Second, we

do not analyze care outcomes, because they are difficult to study within the framework

of this paper, as discussed in Section 7.3. We study the effect of congestion on patient

outcomes in a companion paper (Saruya and Takahashi, 2024).

We conclude by discussing policy implications. First, despite the widespread use

of policies to constrain supply capacity for preventing wasteful service provision (e.g.,

CON laws) and other purposes, such policies have an adverse effect of worsening

access to services. CON laws in health care can increase healthcare spending if ca-

pacity constraints prevent people from accessing necessary care. Second, our results

show that policies can focus on the allocation of capacity in addition to or instead

of the overall level of capacity. Given the substantial cost of adjusting service capac-

ity, policymakers can stir service users to improve the efficiency in service provision,

without adding capacity. Possible policy tools include providing information (on the

availability or wait times of facilities) to patients and increasing out-of-pocket costs

(“congestion tax”) for using congested facilities. Analysis of the effectiveness of these

policies requires information on some primitive parameters (e.g., patients’ responsive-

ness to financial incentives), and is an interesting topic for future research. Finally,

labor market reforms to enable more flexible adjustment of staffing can mitigate the

negative effect of congestion if inflexible staffing is the main source of the effect. We

leave analysis of staffing to future research.
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Appendix A Additional Figures and Tables

Figure A1: Effect of Empty Beds on Admissions and Live Discharges, by Occupancy
Percentile
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Notes: Figure A1 plots the IV estimates of the coefficient on occupancy in Eq. (5) and their 95%
confidence intervals, using as outcomes long-stay admissions (panel (a)) or live discharges (panel
(b)) for the following 1 week (blue), 4 weeks (red), and 12 weeks (orange), separately by baseline
occupancy percentile of each facility. The sign is reversed to represent the pp effect of a 1pp reduction
in occupancy.
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Figure A2: Effect of Empty Beds on Admissions, By Occupancy and Care Levels (4
Weeks)
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Notes: Figure A2 plots the IV estimates of the coefficient on occupancy in Eq. (5) and their 95%
confidence intervals, using long-stay admissions in the following 4 weeks as the outcome, separately by
occupancy and care levels. The coefficients are divided by the coefficient in the baseline regression
that pools all care levels, so the numbers represent the share of each care level in the admission
response.
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Figure A3: Effect of Empty Beds on Admissions, By Occupancy and Long vs. Short
Stays
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Notes: Figure A3 plots the IV estimates of the coefficient on occupancy in Eq. (5) and their 95%
confidence intervals, using as outcomes long-stay (filled circle) or short-stay (open) admissions for the
following 1 week (panel (a)) or 4 weeks (panel (b)). The coefficients are divided by the coefficient in
the baseline regression that pools both long-stay and short-stay admissions, so the numbers represent
the share of each type of admissions in the admission response.
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Figure A4: Effect of Empty Beds on Admissions and Live Discharges, by Occupancy
Level (Uncensored Sample)
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Notes: Figure A4 plots the IV estimates of the coefficient on occupancy in Eq. (5) and their 95%
confidence intervals, using as outcomes long-stay admissions (panel (a)) or live discharges (panel
(b)) for the following 1 week (blue), 4 weeks (red), and 12 weeks (orange), separately by baseline
occupancy level. The estimation sample does not exclude facilities whose maximum occupancy rate
falls in the bottom or top 1 percentile of the distribution of maximum occupancy across providers.
The sign is reversed to represent the pp effect of a 1pp reduction in occupancy.
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Table A1: Health Status of Each Care Level

Support level 1-2 The patient is able to perform most of the basic activities of daily
living independently, but requires some assistance with complex
activities of daily living.

Care level 1 The patient’s ability to perform complex activities of daily living
has declined further from the state of Support level.

Care level 2 In addition to the condition of care level 1, the patient requires
assistance with basic activities of daily living.

Care level 3 Compared to the state of care level 2, there is a significant decline
in terms of both basic and complex activities of daily living, and
almost full nursing care is required.

Care level 4 In addition to the condition of care level 3, the patient’s ability to
move is further reduced and it becomes difficult for her to perform
daily activities without assistance.

Care level 5 The patient’s ability to perform activities of daily living is even
worse than the state of care level 4, and it is almost impossible for
the patient to perform daily activities without nursing care.

Notes: The table describes typical conditions for patients in each care level.
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Table A3: Effect of Empty Beds on Admissions, with Nonlinear Terms (Exclude full
occupancy)

Panel A: Estimates based on Occupancy Levels

1-Week Admission 4-Week Admission

Occupancy (decline) 0.731 0.282*** 0.231*** 1.089** 0.631*** 0.579***
(0.534) (0.0407) (0.0225) (0.504) (0.0473) (0.0285)

Occupancy (decline) ×

I(Occupancy≥ 95pp) 0.151 0.154
(0.140) (0.133)

I(Occupancy≥ 90pp) 0.0557*** 0.0568**
(0.0187) (0.0243)

I(Occupancy≥ 85pp) 0.0850*** 0.0868**
(0.0277) (0.0362)

Cragg-Donald F-stats 5.574 55.68 48.19 5.574 55.68 48.19

N 6,339,068 6,339,068 6,339,068 6,339,068 6,339,068 6,339,068

Panel B: Estimates based on Percentiles of Occupancy

1-Week Admission 4-Week Admission

Occupancy (decline) 0.377*** 0.321*** 0.283*** 0.617*** -0.609*** -0.594***
(0.0803) (0.0535) (0.0411) (0.0246) (0.0225) (0.0204)

Occupancy (decline) ×

I(Occupancy≥ 75pctile) 0.0258*** 0.0260***
(0.00975) (0.00832)

I(Occupancy≥ 50pctile) 0.0227*** 0.0238***
(0.00787) (0.00759)

I(Occupancy≥ 25pctile) 0.0354*** 0.0365***
(0.0120) (0.0117)

Cragg-Donald F-stats 87.50 123.3 101.6 87.50 123.3 101.6

N 6,339,068 6,339,068 6,339,068 6,339,068 6,339,068 6,339,068

Notes: The table shows the estimates of the coefficients in the regression (7), excluding full occupancy.
We use 1-week or 4-week admission as the outcome and deaths in the previous 2 weeks to construct
an instrument for the interaction. The sign is reversed to represent the pp effect of a 1pp reduction in
occupancy. Standard errors clustered at the municipality level are reported in parentheses. ***p<0.01,
**p<0.05, *p<0.1.
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Table A4: Effect of Empty Beds on Admissions, with Nonlinear Terms (Uncensored
Sample)

Panel A: Estimates based on Occupancy Levels

1-Week Admission 4-Week Admission

Occupancy (decline) 0.327*** 0.309*** 0.274*** 0.658*** 0.642*** 0.612***
(0.0312) (0.0256) (0.0198) (0.0334) (0.0298) (0.0260)

Occupancy (decline) ×

I(Occupancy≥ 95pp) 0.0549*** 0.0487***
(0.0137) (0.0153)

I(Occupancy≥ 90pp) 0.0627*** 0.0555***
(0.0144) (0.0170)

I(Occupancy≥ 85pp) 0.116*** 0.103***
(0.0284) (0.0318)

Cragg-Donald F-stats 152.8 134.4 75.03 152.8 134.4 75.03

N 6,786,599 6,786,599 6,786,599 6,786,599 6,786,599 6,786,599

Panel B: Estimates based on Percentiles of Occupancy

1-Week Admission 4-Week Admission

Occupancy (decline) 0.330*** 0.318*** 0.299*** 0.661*** 0.650*** 0.633***
(0.0303) (0.0264) (0.0232) (0.0326) (0.0298) (0.0273)

Occupancy (decline) ×

I(Occupancy≥ 75pctile) 0.0333*** 0.0295***
(0.00792) (0.00885)

I(Occupancy≥ 50pctile) 0.0303*** 0.0269***
(0.00696) (0.00795)

I(Occupancy≥ 25pctile) 0.0463*** 0.0411***
(0.0106) (0.0122)

Cragg-Donald F-stats 239.4 290.0 210.3 239.4 290.0 210.3

N 6,786,599 6,786,599 6,786,599 6,786,599 6,786,599 6,786,599

Notes: Table A4 shows the estimates of the coefficients in the regression (7). The estimation sample
does not exclude facilities whose maximum occupancy rate falls in the bottom or top 1 percentile of
the distribution of maximum occupancy across providers. We use 1-week or 4-week admission as the
outcome and deaths in the previous 2 weeks to construct an instrument for the interaction. The sign
is reversed to represent the pp effect of a 1pp reduction in occupancy. Standard errors clustered at the
municipality level are reported in parentheses. ***p<0.01, **p<0.05, *p<0.1.
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Table A5: Simulated Results of Reallocation (Using Average Occupancy)

Mean Std. Dev. Median Obs.(Facility-pair)

(1) (2) (3) (4)

Panel A: Reallocation based on occupancy level

(i) Change in 1-Week Admission

Percentage point 1.69 7.74 0.05 2,109

Percentage change 45.34 207.40 1.38 2,109

(ii) Change in 4-Week Admission

Percentage point 1.14 6.81 0.12 2,109

Percentage change 7.66 45.66 0.81 2,109

Panel B: Reallocation based on occupancy percentile

(i) Change in 1-Week Admission

Percentage point 0.88 3.92 0.05 1,604

Percentage change 23.62 105.19 1.29 1,604

(ii) Change in 4-Week Admission

Percentage point 0.35 4.52 0.06 1,604

Percentage change 2.35 30.31 0.38 1,604

Notes: The table summarizes the net changes in admissions after reallocation, at the market level (sum
of ∆a

j in Eq. (8) within each market), where a market is defined by a unique combination of city, fiscal
year, and facility size (large or small). “Percentage point” shows the effect on admissions represented
as a pp change in occupancy (so the effect of 1 means a 1pp increase). “Percentage change” shows the
effect on admissions as a fraction of pre-intervention admissions of the two intervened facilities (so the
effect of 1 means a 1% increase).

48

ESRI Discussion Paper Series No.399 
"Capacity Constraints and Inefficient Service Delivery: Theory and Evidence from Nursing Facilities"



Appendix B Proofs

Proof of Proposition 1

Define a function

F (a, d;n) =

[
MBA(n+ a− d)−MCP (n+ a− d)−MCA(a)

MBD(n+ a− d) +MCP (n+ a− d)−MCD(d)

]
(9)

where MBA(p) = rV ′(rp) + bP + bA and MBD(p) = −rV ′(rp) − bP + bD. Note

MBA′(p)+MBD′(p) = 0, which will be used in the algebra below without a mention.

The optimal admission and discharge decisions at interior satisfy F (a∗(n), d∗(n);n) =

0. Also, the Jacobian matrix

JF (a, d;n)

=

[
MBA′(p)−MCP ′(p)−MCA′(a) −MBA′(p) +MCP ′(p)

MBD′(p) +MCP ′(p) −MBD′(p)−MCP ′(p)−MCD′(d)

]
,

where p = n + a − d, is invertible as long as MCP ′(·), MCA′(·), and MCD′(·) are

positive and −V ′′(·) is non-negative: the determinant of JF is

DJF (a, d;n)

=
(
−MBA′(p) +MCP ′(p)

) (
MCA′(a) +MCD′(d)

)
+MCA′(a)MCD′(d) > 0.

(i-a) By assumption, JF is invertible at (a, d, n) = (ā, d̄, n̄). Then, by the implicit

function theorem, we have[
∂a∗

∂n

∣∣
n=n̄

∂d∗

∂n

∣∣
n=n̄

]
= −JF (ā, d̄; n̄)

−1

[
MBA′(p̄)−MCP ′(p̄)

MBD′(p̄) +MCP ′(p̄)

]

=
−MBA′(p̄) +MCP ′(p̄)

DJF (ā, d̄; n̄)

[
−MCD′(d̄)

MCA′(ā)

]
. (10)

Thus, we have −∂a∗

∂n
> 0 and −∂d∗

∂n
< 0 at n = n̄.
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(i-b) With MCA′(ā) = κA
2 and MCD′(d̄) = κD

2 , Eq. (10) can be expressed as[
∂a∗

∂n
(n̄)

∂d∗

∂n
(n̄)

]
=

−MBA′(p̄) +MCP ′(p̄)

(−MBA′(p̄) +MCP ′(p̄)) (κA
2 + κD

2 ) + κA
2 κ

D
2

[
−κD

2

κA
2

]
.

Because we hold MCA(ā) and MCD(d̄) constant, we have ∂p̄
∂κA

2
= ∂p̄

∂κD
2
= 0.41 There-

fore, we have ∂
∂κA

2

(
−∂a∗

∂n
(n̄)

)
< 0, ∂

∂κD
2

(
−∂a∗

∂n
(n̄)

)
> 0, ∂

∂κD
2

(
∂d∗

∂n
(n̄)

)
< 0, and ∂

∂κA
2

(
∂d∗

∂n
(n̄)

)
>

0.

(ii) By Eq. (10),

−∂a∗

∂n
−

(
−∂d∗

∂n

)
=

1

1 + E(ā, d̄; n̄)

where E(a, d;n) = MCA′(a)MCD′(d)
(−MBA′(p̄)+MCP ′(p̄))(MCA′(a)+MCD′(d))

> 0. Thus, −∂a∗

∂n
−

(
−∂d∗

∂n

)
∈

(0, 1).

(iii) Let p∗ = n+ a∗ − d∗. Then,

∂

∂n

[
∂a∗

∂n
∂d∗

∂n

]
=

∂

∂n

{
−MBA′(p∗) +MCP ′(p∗)

(−MBA′(p∗) +MCP ′(p∗)) (κA
2 + κD

2 ) + κA
2 κ

D
2

[
−κD

2

κA
2

]}

=

(
1 +

∂a∗

∂n
− ∂d∗

∂n

)
× ∂

∂p

{
−MBA′(p∗) +MCP ′(p∗)

(−MBA′(p∗) +MCP ′(p∗)) (κA
2 + κD

2 ) + κA
2 κ

D
2

}[
−κD

2

κA
2

]

=

(
1 +

∂a∗

∂n
− ∂d∗

∂n

) (
−MBA′′(p∗) +MCP ′′(p∗)

)
κA
2 κ

D
2

{DJF (a
∗, d∗)}2

[
−κD

2

κA
2

]
.

Because 1 + ∂a∗

∂n
− ∂d∗

∂n
> 0 by (ii), −∂2a∗

∂n2 > 0 and ∂2d∗

∂n2 > 0 at n = n̄ if and only if

MCP ′′(p̄) > MBA′′(p̄).

Note that
∂DJF

(a∗,d∗)

∂n
=

(
1 + ∂a∗

∂n
− ∂d∗

∂n

) (
−MBA′′(p∗) +MCP ′′(p∗)

)
(κA

2 + κD
2 ),

which is positive at n = n̄ if and only if MCP ′′(p̄) > MBA′′(p̄). This, together with

(iii), establishes the statement in Section 3 that DJF increases with n if −∂2a∗

∂n2 > 0

and ∂2d∗

∂n2 > 0.

41κA
1 and κD

1 need adjusting to hold the marginal costs constant.
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Proof of Proposition 2

If κA
2 or κD

2 is positive (and the other is zero), the conclusion follows from Eq. (10).

If both are zero, Eq. (9) implies n+ a∗ − d∗ is constant, yielding the conclusion.

Appendix C Theory of Reallocation

This section provides a formal theory of reallocation intuitively discussed in Section

3.3.

Appendix C.1 Model

Consider the following two-period, two-facility setting. There are two homogeneous

facilities, 1 and 2. In period 1, each of the two facilities chooses its initial occupancy,

to maximize its payoff. In period 2, given the occupancy nj, facility j chooses new

admissions aj to maximize its payoff. To allow for heterogeneity in nj, we assume

that facilities face idiosyncratic payoff and occupancy shocks in period 1. We make

the following simplifying assumptions: (1) V is linear, bP = b, and bA = 0. (2) The

facilities only choose admissions. (3) The facilities are myopic.42

Period 1. The utility of facility j ∈ {1, 2} in period 1 is Uj1 = (r+ b)n−CP (n)−
CA(n), where r denotes per-patient profitability and b denotes per-patient altruistic

utility. CP and CA are both strictly increasing and strictly convex. We assume that

the optimal admission is an interior solution determined by the first-order condition.

Facilities face transitory shocks to
(
r, b, CP , CA

)
before choosing the initial occupancy,

and there can also be direct shocks to the occupancy rate. Examples of such shocks

are emergency admissions, deaths, spatial or information frictions, and staff shortages

(see footnote 22).

Period 2. Given occupancy nj, facility j chooses new admissions aj to maximize

Uj2 = (r + b) (nj + aj) − CP (nj + aj) − CA(aj). We omit idiosyncratic shocks for

this period to focus our analysis on the effect of heterogeneous initial occupancy. We

assume the solution (a∗1(n1), a
∗
2(n2)) and resulting occupancy are interior.

The myopic facilities solve the period-1 problem to obtain nj = n∗
j(r, b, C

P , CA).

42Dynamics will complicate the analysis without affecting the mechanisms in our static model.
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Due to idiosyncratic shocks, nj can vary between the two facilities. In period 2, given

nj, facility j chooses aj to maximize Uj2(aj;nj, r, b, C
P , CA).

The government can reallocate N = n1 + n2 patients to facility 1 or 2 before the

facilities make an admission decision. The government is concerned with total access

to care, or the quantity of service production, given by A(n1;N) = n1+a∗1(n1)+n2+

a∗2(n2) = N +a∗1(n1)+a∗2(N−n1). We now show that occupancy smoothing improves

this objective. As in Section 3, we assume MCA(a) = κA
1 + κA

2 a, κ
A
1 , κ

A
2 ≥ 0.

Proposition 3. Suppose MCP ′′(p) > 0 for all p and κA
2 > 0. Then A(n1;N) is

strictly increasing in n1 if and only if n1 < n2, and is maximized at n1 =
N
2
.

The proof is in Appendix C.2. Given the total number of initial in-facility patients

N = n1 + n2, an occupancy-smoothing policy that moves patients from the more

congested facility to the less congested facility increases aggregate access to care.

Thus, aggregate access is maximized by setting n1 = n2 =
N
2
.

Appendix C.2 Proof of Proposition 3

Let

G (a1, a2;n1, N) =

[
r + b−MCP (n1 + a1)−MCA(a1)

r + b−MCP (N − n1 + a2)−MCA(a2)

]
. (11)

The optimal admission satisfies G (a∗1, a
∗
2;n1, N) = 0. Note that if n1 = N − n1, then

a∗1 = a∗2 and if n1 < (>)N − n1, then a∗1 > (<)a∗2. The Jacobian of G,

JG =

[
−MCP ′(n1 + a1)− κA

2 0

0 −MCP ′(N − n1 + a2)− κA
2

]
, (12)

is full rank at all (n1, a1, a2) because of strict convexity.

Let p∗j = nj + a∗j . By the implicit function theorem, at any given n1, we have

[
∂a∗1
∂n1
∂a∗2
∂n1

]
= −J−1

G

[
∂G1

∂n1

∂G2

∂n1

]
=

 −MCP ′(p∗1)

MCP ′(p∗1)+κA
2

MCP ′(p∗2)

MCP ′(p∗2)+κA
2

 . (13)
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Differentiating both sides with respect to n1 yields

∂

∂n1

[
∂a∗1
∂n1
∂a∗2
∂n1

]
=


(
1 +

∂a∗1
∂n1

)
∂

∂p1

{
−MCP ′(p1)

MCP ′(p1)+κA
2

}∣∣∣
p1=p∗1(

−1 +
∂a∗2
∂n1

)
∂

∂p2

{
MCP ′(p2)

MCP ′(p2)+κA
2

}∣∣∣
p2=p∗2


=


(
1 +

∂a∗1
∂n1

)
−MCP ′′(p∗1)κ

A
2

{MCP ′(p∗1)+κA
2 }2(

−1 +
∂a∗2
∂n1

)
MCP ′′(p∗2)κ

A
2

{MCP ′(p∗2)+κA
2 }2

 .

By Eq.(13), we have
∂a∗1
∂n1

> −1 and
∂a∗2
∂n1

< 1. Therefore,

∂
(

∂a∗1
∂n1

+
∂a∗2
∂n1

)
∂n1

=

(
1 +

∂a∗1
∂n1

)
−MCP ′′(p∗1)κ

A
2

{MCP ′(p∗1) + κA
2 }

2 +

(
−1 +

∂a∗2
∂n1

)
MCP ′′(p∗2)κ

A
2

{MCP ′(p∗2) + κA
2 }

2

< 0.

Thus,
∂a∗1
∂n1

+
∂a∗2
∂n1

strictly decreases with n1. Moreover, we have
∂a∗1
∂n1

+
∂a∗2
∂n1

= 0 if

n1 = N − n1 (n1 = N
2
). Therefore, if n1 < n2 = N − n1 (n1 < N

2
), then we have

∂a∗1
∂n1

+
∂a∗2
∂n1

> 0 and A(n1;N) = N + a∗1(n1) + a∗2(N − n1) is increasing in n1, and if

n1 > n2 (n1 > N
2
), then we have

∂a∗1
∂n1

+
∂a∗2
∂n1

< 0 and A(n1;N) is decreasing in n1.

Thus, A(n1;N) is maximized at (n1, n2) =
(
N
2
, N

2

)
.
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