Introduction	LFM	Data & Instruments	Results	Conclusion
0000000	0000	0000	000 000000	

Decomposing Local Fiscal Multipliers: Evidence from Japan

Taisuke Kameda, Ryoichi Namba, and Takayuki Tsuruga

Cabinet Secretariat, CRISER, and Kyoto Univ.

August, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

troduction	
0000000	

In

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Appendix 0000 00000000

Motivation: Fiscal multipliers

- Growing interest in the interaction btwn gov't spending and the economic activity
- Fiscal multipliers
 - By how many % does output increase when gov't spending increases by 1% of output?
- Two directions in research on fiscal multiplier
 - 1. Traditional national fiscal multiplier
 - Identified from time-series variations
 - 2. Local fiscal multiplier (LFM)
 - Identified from the region-time specific variations

ntroduction	
0000000	

.FM

)ata & Instrumen))000 Results 000 000000 Conclusion

Appendix 0000 00000000

Motivation: Local fiscal multipliers

- What is the LFM?
 - Typical estimation eqn.

$$\frac{Y_{r,t}-Y_{r,t-1}}{Y_{r,t-1}} = \beta \frac{G_{r,t}-G_{r,t-1}}{Y_{r,t-1}} + \alpha_r + \delta_t + \varepsilon_{r,t}$$

 $Y_{r,t}$: per capita output in region r, $G_{r,t}$: per capita gov't spending in region r, α_r :entity fixed effect, δ_t : time fixed effect

- The LFM differs from the national fiscal multiplier
 - b/c δ_t controls for all common effects of agg. shocks and policy (e.g., common effect of monetary policy)
 - but β fails to capture common effects of fiscal policy

roduction	
000000	

Int oc LFM 0000 Data & Instruments 0 000 Results 000 000000 Conclusion

Appendix 0000 00000000

Motivation: Spillover

- Another important difference from the national fiscal multiplier
- An interpretation
 - Fiscal multiplier of gov't spending in an economy in a monetary union (e.g., EU countries)
- Within a single country, ...
 - Strong interdependence without the border effect
 - Gov't spending may easily spill over into other economies

troduction	
0000000	

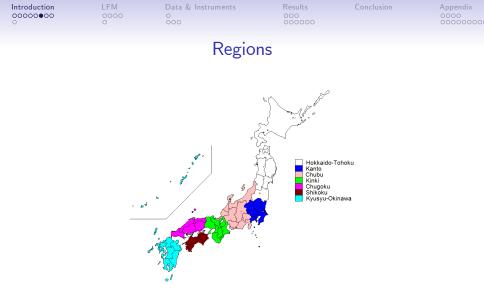
In O _FM 0000 0 Data & Instruments D DOO Results 000 000000 Conclusion

Appendix 0000 00000000

Research questions

- 1. How large is the LFM in Japan?
 - We provide estimates of LFM, comparable to other countries
- 2. How large is the spillover within the region?
 - Positive if there is a leakage in demand
 - Negative if production factors (e.g., labor) relocate across prefectures
- 3. How large is the LFM on expenditure components of GDP?
 - Crowding-out or crowding-in?
 - Spillover in expenditure components

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000●000 ○	0000	0 000	000 000000		0000


This paper

- 1. Estimate LFM at regional level
 - Separate the country into regions
 - Regional fiscal multiplier (RFM)
- 2. Decompose RFM into prefectural fiscal multiplier (PFM) and region-wide spillover

 $\mathsf{RFM} \simeq \mathsf{PFM} + \mathsf{Region}$ -wide spillover

3. Decompose RFM into expenditure components

$\mathsf{RFM}\ \simeq\mathsf{RFM}_{\mathsf{C}}+\mathsf{RFM}_{\mathsf{I}}+\mathsf{RFM}_{\mathsf{G}}+\mathsf{RFM}_{\mathsf{NX}}$

• Definition of "Region" used in Prefectural Accounts • Estimation

・ロト ・ 一下・ ・ モト ・ モト・

э.

Why Japan?

• Prefectural accounts in JPN are constructed in a way highly comparable to the national account

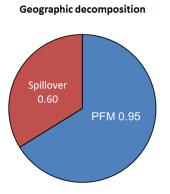
• Cabinet Office in JPN publishes *C*, *I*, *G* and *NX* at the prefectural level

• BEA in the US does not publish *I*, *G* and *NX* at the state/county level

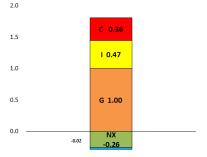
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
000000● ○	0000	0 000	000 000000		0000

Main findings


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• RFM = 1.55


Introduction	LFM	Data	
0000000	0000	0	
0	0	000	

Main findings

• RFM = 1.55

Expenditure decomposition

-0.5

■Govt Spendings ■ Investment ■Consumption ■NX ■ Inventory

Introduction	
00000000	

LFM 0000 0 Data & Instrument D DOO Results 000 000000 Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Appendix 0000 00000000

Literature on local fiscal multipliers

- Most studies are based on the US state/county
 - ARRA papers estimate "Jobs-multiplier" and "cost-per-job"
 - using state-level employment data of BLS
 - Chorodow-Reich et al. (2012), Conley and Dupor (2013), Wilson (2012), Dupor and McCroy (2017) among others
 - Non-ARRA papers focus on output multiplier or income multipliers
 - Nakamura and Steinsson (2014), Clemens and Miran (2012), Shoag (2016), Suárez-Serrato and Wingender (2016)

Introduction
00000000

LFM 0000 0 Data & Instrument D DOO Results 000 000000 Conclusion

Appendix 0000 00000000

Literature on local fiscal multipliers

- Most studies are based on the US state/county
 - ARRA papers estimate "Jobs-multiplier" and "cost-per-job"
 - using state-level employment data of BLS
 - Chorodow-Reich et al. (2012), Conley and Dupor (2013), Wilson (2012), Dupor and McCroy (2017) among others
 - Non-ARRA papers focus on output multiplier or income multipliers
 - Nakamura and Steinsson (2014), Clemens and Miran (2012), Shoag (2016), Suárez-Serrato and Wingender (2016)
- International evidence
 - Japan: Brückner and Tuladhar (2014) focus on the 1990s and relationship with financial distress
 - Italy: Acconcia et al. (2014), China: Guo et al. (2016)
- Our focus: spillover and expenditure components

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	•000 0	0000	000 000000		0000

Empirical strategy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000 0	0 000	000 000000		0000

Estimation equation used in the literature

• Typical estimation eq.

$$\frac{Y_{r,t}-Y_{r,t-2}}{Y_{r,t-2}} = \beta_{\mathcal{R}} \frac{\mathcal{G}_{r,t}-\mathcal{G}_{r,t-2}}{Y_{r,t-2}} + \alpha_r + \delta_t + \varepsilon_{r,t}$$

- Y_{r,t}: per capita GDP in region r
- G_{r,t}: per capita gov't spending in region r
- β_R : (two-year cumulative) RFM region
- We do not estimate this equation, but ...

LFM	
0000	
0	

LF

Our estimation equation

We use the prefecture data...

$$\frac{y_{r,p,t} - y_{r,p,t-2}}{y_{r,p,t-2}} = \gamma_P \frac{g_{r,p,t} - g_{r,p,t-2}}{y_{r,p,t-2}} + \eta_{r,p} + \delta_t + \varepsilon_{r,p,t}$$

- $y_{r,p,t}$: per capita GDP in prefecture p that belongs to region r
- g_{r,p,t}: per capita gov't spending in p
- $\eta_{r,p}$: entity fixed effect
- An interpretation
 - γ_P : PFM

troduction
0000000

Data	&	Instru
0		
000		

Results 000 000000 Conclusion

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Appendix 0000 00000000

Our estimation equation

• ... together with regional gov't spending:

$$\frac{y_{r,p,t} - y_{r,p,t-2}}{y_{r,p,t-2}} = \gamma_P \frac{g_{r,p,t} - g_{r,p,t-2}}{y_{r,p,t-2}} + \gamma_S \frac{G_{r,t} - G_{r,t-2}}{Y_{r,t-2}} + \eta_{r,p} + \delta_t + \varepsilon_{r,p,t}$$

- $y_{r,p,t}$: per capita GDP in prefecture p that belongs to region r
- g_{r,p,t}: per capita gov't spending in p
- $\eta_{r,p}$: entity fixed effect
- An interpretation

LFM 0000

- γ_P: PFM
- γ_S : region-wide spillover

ntro	duc	tion	
00	00	000	

LFM	
0000	

Data & Instruments 0 000 Results 000 000000 Conclusion

Appendix 0000 00000000

Geographic decomposition

• Take the weighted average of estimation eq.

$$\Rightarrow \frac{Y_{r,t} - Y_{r,t-2}}{Y_{r,t-2}} \simeq \underbrace{(\gamma_P + \gamma_S)}_{\beta_R} \underbrace{G_{r,t} - G_{r,t-2}}_{Y_{r,t-2}} + \alpha_r + \delta_t + \varepsilon_{r,t}$$

• Weight $\omega_{r,p}$: time-series mean of the GDP share of p to r

•
$$\alpha_r = \sum_{p \in r} \omega_{r,p} \eta_{r,p}, \ \varepsilon_{r,t} = \sum_{p \in r} \omega_{r,p} \varepsilon_{r,p,t}$$

• Bottom line: Under some assumptions for approx. • more

 $\mathsf{PFM} + \mathsf{region}\mathsf{-wide} \mathsf{spillover} \simeq \mathsf{RFM}$

• The same calculation can be made for expenditure components of GDP

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000

Data and Instruments

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	000	000		0000

Data

- Sample period: 1990 2012
 - Annual Report on Prefectural Accounts
 - Annual Statistical Report on Local Government Finance

- 7 regions and 47 prefectures
- Local gov't spending: more
 - Gov't consumption + public investment
 - e.g., Blanchard and Perotti (2002)

ntroduction	
0000000	
)	

=M 000 Data & Instruments o •00 Results 000 000000 Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Appendix 0000 00000000

Instruments: Treasury disbursements

• Gov't spending is endogenous

• To instrument gov't spending, we use cross-sectional variations in treasury disbursements

• Transfers from the *central gov't*

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	○ ○●○	000 000000		0000

Why treasury disbursements?

1. Important revenue source for the local gov't

• Large vertical fiscal gap btwn the central and local gov'ts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	LFM	Data & Instruments	Results	Conclusion	
0000000	0000	0 0●0	000 000000		

Why treasury disbursements?

1. Important revenue source for the local gov't

• Large vertical fiscal gap btwn the central and local gov'ts

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Financed by national tax revenue pooled by the central gov't
 - unlikely to be affected by local business cycle

ntroduction	LFM	Data & Instrument
0000000	0000	○ ○●○

Why treasury disbursements?

- 1. Important revenue source for the local gov't
 - Large vertical fiscal gap btwn the central and local gov'ts
- Financed by national tax revenue pooled by the central gov't
 - unlikely to be affected by local business cycle
- 3. Program-based transfers
 - e.g., Grants for compulsory education, public health, construction (roads, ports, rivers, ...)
 - Some grants are mandatory by the *Local Public Law*
 - Other grants are discretionary, but the outline of programs is determined by the central gov't, not by local gov't
 - We can remove transfers associated with local business cycle (e.g., Great East Japan earthquake) in constructing instrument ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 00●	000 000000		0000

Components of treasury disbursements

Program	% (as of 2012)	Used for IV?
Education	30.3	Yes
Construction	21.3	Yes
Grants related to local business $cycle^{1)}$	11.2	No
Disaster	9.2	No
Other earmarked transfers ²⁾	4.7	Yes
$Unknowns^{3)}$	23.3	No

- 1. e.g., supplemental social security income for low income people, unemployment measures, etc.
- 2. subsidies for national projects (Cost for elections, census, statistical data, subsidy for electric power plants, ...)
- 3. referred to "others" in Annual Report of Local Government Finance→graph

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 000		0000

Results

Introduction	LFM	Data & Instruments	Results	Conclusion	A
0000000	0000	0	000		0
0	0	000	000000		0

Benchmark results

Output growth	OLS		2S	LS
RFM (β_R)	1.14**		1.55**	
	(0.20)		(0.27)	
PFM (γ_P)	0.44**	0.60*	0.95**	1.18**
	(0.13)	(0.13)	(0.27)	(0.21)
Spillover (γ_S)	0.70**		0.60	
	(0.19)		(0.35)	
P-value of			0.12	0.17
J-test				
Observations	987	987	987	987
Adj. <i>R</i> ²	0.55	0.54	0.51	0.49

Note: *5% significance level, ** 1% significance level. Time FE and Prefectural FE are included. SE clustered by prefectures. Angrist-Pischke's first-stage F is 17.9 for $(g_{r,p,t} - g_{r,p,t-2}) / y_{r,p,t}$ (Adj. $R^2 = 0.69$) and 763.4 for $(G_{r,t} - G_{r,t-2}) / Y_{r,t}$ (Adj. $R^2 = 0.86$). We include the dummy for Great East Japan Earthquake as a control variable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- In 2SLS
 - The estimated RFM is larger than one
 - •

Introduction	LFM	Data & Instruments	Results	Conclusion
0000000	0000	0000	000000	

Benchmark results

Output growth	OI	S	2S	LS
RFM (β_R)	1.14**		1.55**	
	(0.20)		(0.27)	
PFM (γ_P)	0.44**	0.60*	0.95**	1.18**
	(0.13)	(0.13)	(0.27)	(0.21)
Spillover (γ_S)	0.70**		0.60	
	(0.19)		(0.35)	
P-value of			0.12	0.17
J-test				
Observations	987	987	987	987
Adj. <i>R</i> ²	0.55	0.54	0.51	0.49

Note: *5% significance level, ** 1% significance level. Time FE and Prefectural FE are included. SE clustered by prefectures. Angrist-Pischke's first-stage F is 17.9 for $(g_{r,p,t} - g_{r,p,t-2}) / y_{r,p,t}$ (Adj. $R^2 = 0.69$) and 763.4 for $(G_{r,t} - G_{r,t-2}) / Y_{r,t}$ (Adj. $R^2 = 0.86$). We include the dummy for Great East Japan Earthquake as a control variable.

- In 2SLS
 - The estimated RFM is larger than one
 - Positive spillover, but imprecisely estimated

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0000	000 000000		0000

Expenditure components in GDP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• RFM =1.55

• Crowding-in effect must be observed

• What expenditure components?

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 00000		0000

Private consumption, investment and net exports

	Consumption	Investment	Net exports
RFM (β_R)	0.36*	0.47**	-0.26
	(0.15)	(0.14)	(0.32)
PFM (γ_P)	-0.04	0.22	-0.24
	(0.17)	(0.13)	(0.30)
Spillover (γ_{S})	0.41**	0.25**	-0.03
	(0.15)	(0.10)	(0.38)
Observations	987	987	987
Adj. <i>R</i> ²	0.21	0.58	0.14

Note: *5% significance level, ** 1% significance level. In all cases, tests of overidentifying restrictions fail to reject the null at conventional significance level.

(日) (日) (日) (日) (日) (日) (日) (日)

• Crowding-in effect in consumption and investment

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000

Private consumption, investment and net exports

	Consumption	Investment	Net exports
RFM (β_R)	0.36*	0.47**	-0.26
	(0.15)	(0.14)	(0.32)
PFM (γ_P)	-0.04	0.22	-0.24
	(0.17)	(0.13)	(0.30)
Spillover (γ_{S})	0.41**	0.25**	-0.03
	(0.15)	(0.10)	(0.38)
Observations	987	987	987
Adj. <i>R</i> ²	0.21	0.58	0.14

Note: *5% significance level, ** 1% significance level. In all cases, tests of overidentifying restrictions fail to reject the null at conventional significance level.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

- Crowding-in effect in consumption and investment
- Spillover is economically and statistically significant in consumption and investment • More

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000

Summary: benchmark regressions and absorption

	GDP	Absorption
RFM (β_R)	1.55**	1.81**
	(0.27)	(0.20)
PFM (γ_P)	0.95**	1.19**
	(0.27)	(0.23)
Spillover (γ_S)	0.60	0.63**
	(0.35)	(0.19)
Observations	987	987
Adj. <i>R</i> ²	0.51	0.58

- "Absorption": domestic expenditure within the prefecture
- Spillover is economically and statistically significant in "domestic absorption" $(c_{r,p,t} + i_{r,p,t} + g_{r,p,t})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Robustness

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000

Back-of-envelope calculation of nation-wide spillover

• Consider a hypothetical eq.

$$\frac{Y_{r,t} - Y_{r,t-2}}{Y_{r,t-2}} = \beta_R \frac{G_{r,t} - G_{r,t-2}}{Y_{r,t-2}} + \beta_S \frac{G_t - G_{t-2}}{Y_{t-2}} + \alpha_r + \nu_{r,t}$$

where G_t denotes the national gov't spending and $\beta_S =$ nation-wide spillover

- β_S is very difficult to identify because we cannot use time-fixed effect

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 000000		0000

Back-of-envelope calculation of nation-wide spillover

• We can back-of-envelope calculate β_S

$$\frac{Y_t - Y_{t-2}}{Y_{t-2}} \simeq \left(\underbrace{\beta_R + \beta_S}_{\text{national FM}}\right) \frac{G_t - G_{t-2}}{Y_{t-2}} + \alpha + v_t$$

• Compare our β_R with the national fiscal multiplier estimated by *previous studies*

	National FM	β_R	Nation-wide spillover
Time series			
Miyamoto et al. (2016)	1.70	1.55	0.15
Watanabe et al. (2010)	1.56	1.55	0.01
Macro-econometric			
BOJ (2016)	1.40	1.55	-0.15
ESRI (2015)	1.24	1.55	-0.31

Note: National fiscal multipliers in the tables are the previous studies' estimates_ 🕨 👘 🖉 🖉 🖉 🖉 🖉

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 000000		0000

Conclusion

1. How large is the local fiscal multiplier?

• 1.6

- 2. How large is the region-wide spillover?
 - About 1/3 of RFM
- 3. How large is the RFM on expenditure components of GDP?
 - Crowding-in effect
 - Economically and statistically significant spillover in demand within prefecture

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0000	000		• 000 00000000

Remarks on geographic decomposition

• The approximation result is

```
\mathsf{RFM} \simeq \mathsf{PFM} + \mathsf{region}\mathsf{-wide} \mathsf{spillover}
```

- This interpretation is valid as long as
 - 1. Distributions of output and population within a region are stable during the sample periods:

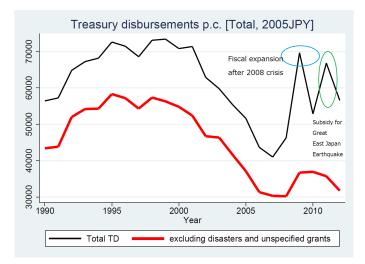
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Regions are defined as a group
- 3. Control variables may weaken the approximations
- • back

roduction	
000000	

Data & Instrument D DOO Results 000 000000 Conclusion

Appendix 0000


Remarks on gov't spending

1. Our definition

- g_{r,p,t} =gov't consumption + public investment
- Similar results when $g_{r,p,t} =$ public investment
- 2. Due to lack of data, gov't spending
 - g_{r,p,t} =local gov't spending + direct spending in p by central gov't
 - On average, 60% of spending are made local governments (prefectures + municipalities) and 40% is made by the central gov't

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0000	000		0000

Treasury Disbursements (national level)

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000	0000	0 000	000		000000000

Hypothesis

- Small PFM due to two offsetting effects
 - $1. \ \ {\sf Expenditure-switching \ effect}$
 - Increase in g_{r,p,t} ⇒Increase in domestic relative prices⇒ Decline in domestic demand

- 2. Income effects on liquidity constrained agents
 - Increase in $g_{r,p,t} \Rightarrow$ Increase in domestic demand

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 000000		0000 00000000

Hypothesis

- Small PFM due to two offsetting effects
 - $1. \ \ {\sf Expenditure-switching \ effect}$
 - Increase in g_{r,p,t} ⇒Increase in domestic relative prices⇒ Decline in domestic demand
 - 2. Income effects on liquidity constrained agents
 - Increase in $g_{r,p,t} \Rightarrow$ Increase in domestic demand
- Large region-wide spillover due to complementary effects
 - 1. Expenditure-switching effect
 - Increase in $G_{r,t} \Rightarrow$ Decline in domestic relative prices \Rightarrow Increase in demand for domestic goods
 - 2. Income effects
 - Increase in G_{r,t} ⇒ Leakage in demand ⇒Increase in income ⇒Increase in demand for domestic goods

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0000	000 000000		0000 00000000

Robustness

- Adding controls
 - Population growth rate (due to assumption of the stable population distribution)
- Dropping samples prefectures that may be an outlier
 - Hokkaido and Okinawa
 - Tokyo
 - Dropping samples of Fukushima, Iwate, Ibaraki, Miyagi after 2011 $(D_{r,p,t}^E = 1)$

- Our multiplier is two-year cumulative multiplier
 - 1 year or 3 years? 💽
- Fiscal multiplier of public investment

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 000000		0000

Robustness check (i): Adding Pop. growth, Lagged dependent var.

• Adding population growth

	Output	Absorption
RFM (β_R)	1.53**	1.76**
	(0.28)	(0.23)
PFM (γ_P)	0.95**	1.17**
	(0.28)	(0.24)
Spillover (γ_S)	0.59	0.58**
	(0.35)	(0.21)
Observations	987	987
Adj. <i>R</i> ²	0.51	0.58

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 000000		0000

Robustness check (i): Adding Pop. growth, Lagged dependent var.

• Adding the lagged dependent variable

	Output	Absorption
RFM (β_R)	1.54**	1.94**
	(0.27)	(0.20)
PFM (γ_P)	1.08**	1.29**
	(0.30)	(0.2)
Spillover (γ_S)	0.46	0.65**
	(0.32)	(0.17)
Observations	893	893
Adj. <i>R</i> ²	0.54	0.62

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0000	000 000000		0000

Robustness check (i): Adding Pop. growth, Lagged dependent var.

• Adding the population growth and lagged dependent variable

	Output	Absorption
RFM (β_R)	1.46**	1.87**
	(0.25)	(0.21)
PFM (γ_P)	1.06**	1.27**
	(0.29)	(0.22)
Spillover (γ_S)	0.40	0.60**
	(0.30)	(0.19)
Observations	893	893
Adj. <i>R</i> ²	0.54	0.63

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000 00000000

Dropping Hokkaido and Okinawa

	Output	Absorption
RFM (β_R)	1.62**	1.72**
	(0.29)	(0.20)
PFM (γ_P)	1.03**	1.07**
	(0.25)	(0.24)
Spillover (γ_S)	0.59	0.65**
	(0.37)	(0.20)
Observations	945	945
Adj. <i>R</i> ²	0.51	0.60

Hokkaido and Okinawa: the most northern and southern islands of JPN

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000 000000000

• Dropping Tokyo

	Output	Absorption
RFM (β_R)	1.54**	1.82**
	(0.28)	(0.21)
PFM (γ_P)	0.94**	1.21**
	(0.28)	(0.24)
Spillover (γ_S)	0.60	0.62**
	(0.35)	(0.18)
Observations	966	966
Adj. <i>R</i> ²	0.51	0.58

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tokyo is the most influential on other prefectures

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000 00000000

• Estimation based on the sample before the global financial crisis

	Output	Absorption
RFM (β_R)	1.79**	2.04**
	(0.30)	(0.25)
PFM (γ_P)	0.86**	1.22**
	(0.25)	(0.24)
Spillover (γ_S)	0.93*	0.81**
	(0.41)	(0.33)
Observations	799	799
Adj. <i>R</i> ²	0.42	0.53

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 000000		0000 0000000

• Estimation dropping the disaster-hit prefectures (after the Great East Japan Earthquake in 2011)

	Output	Absorption
RFM (β_R)	1.74**	1.86**
	(0.28)	(0.22)
PFM (γ_P)	1.21**	1.25**
	(0.24)	(0.24)
Spillover (γ_S)	0.53	0.61**
	(0.34)	(0.19)
Observations	979	979
Adj. <i>R</i> ²	0.50	0.56

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000

Robustness check (iv): Cumulative fiscal multiplier

Output	1 year	2 years	3 years
RFM (β_R)	1.49**	1.55**	1.71**
	(0.30)	(0.27)	(0.28)
PFM (γ_P)	0.85**	0.95**	0.91**
	(0.21)	(0.27)	(0.27)
Spillover (γ_S)	0.65*	0.60	0.80*
	(0.32)	(0.35)	(0.34)
Observations	799	987	940
Adj. <i>R</i> ²	0.46	0.51	0.48

• The impact multipliers are estimated from the sample period before 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
00000000	0000	0 000	000 000000		0000

Robustness check (iv): Cumulative fiscal multiplier

Absorption	1 year	2 years	3 years
RFM (β_R)	2.15**	1.81**	2.06**
	(0.29)	(0.20)	(0.26)
PFM (γ_P)	1.29**	1.19**	1.20**
	(0.27)	(0.23)	(0.21)
Spillover (γ_S)	0.86*	0.63**	0.86**
	(0.36)	(0.19)	(0.26)
Observations	799	987	940
Adj. R^2	0.45	0.58	0.59

• The impact multipliers (1 year) are estimated from the sample period before 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	LFM	Data & Instruments	Results	Conclusion	Appendix
0000000 0	0000	0 000	000 000000		0000

Robustness check (v): Multipliers of public investment

	Output	Absorption
RFM (β_R)	2.06**	2.19**
	(0.30)	(0.28)
PFM (γ_P)	0.99**	1.30**
	(0.32)	(0.27)
Spillover (γ_S)	1.06**	0.89**
	(0.40)	(0.26)
Observations	987	940
Adj. <i>R</i> ²	0.51	0.57

 RFM and spillover are both larger when we use public investment for gov't spending

Introduction
00000000
0

LFM 0000 Data & Instruments

Results 000 000000 Conclusion

Appendix 0000 00000000

Constructing instruments

• Let

- *s_{r,p,t}* is prefecture-specific treasury disbursements after removing components related to local economies
- $S_{r,t}$ is the region analog
- Our instruments are $\Delta s_{r,p,t}$, $\Delta s_{r,p,t-1}$, $\Delta S_{r,t}$, $\Delta S_{r,t-1}$ (scaled by lagged output)
 - We also use regional dummies interacted with $\Delta S_{r,t}$ and $\Delta S_{r,t-1}$ to allow for variation in sensitivity to regional variables across regions (Nakamura and Steinsson 2014)

troduction	
0000000	

LFM 0000 Data & Instruments 0 000 Results 000 000000 Conclusion

Appendix 0000 00000000

Control variables

- In benchmark regression, we control for the negative impact of Great East Japan Earthquake
 - Dummy $D_{r,p,t}^E$ that takes one if the prefecture are strongly influenced by the earthquake and year t > 2011

 $D_{r,p,t}^{E} = \begin{cases} 1 & \text{if Fukushima, Ibaraki, Iwate, Miyagi and } t > 2011 \\ 0 & \text{otherwise.} \end{cases}$

- Local tax rate?
 - We did not control for local tax rate, b/c local tax rates almost fully comove over time
 - Time fixed effect could remove the variations

