Robot, Employment, and Population: Evidence from Articulated Robot in Japan's Local Labor Markets

Daisuke Adachi Daiji Kawaguchi Yukiko U. Saito

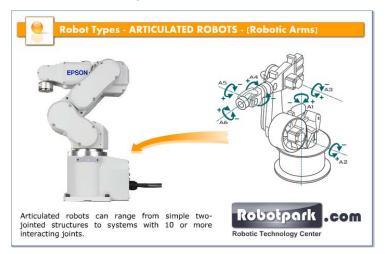
Yale University, University of Tokyo, Waseda University

July 28, 2019

Automation technology and employment

- How does the automation affect our future work?
- Half of current occupations disappear due to the penetration of AI (Frey and Osborne, 2017)
- Penetration of robots reduced the local employment-population ratio in the US (Acemoglu and Restrepo, 2019)
- Penetration of robots reduced the local manufacturing employment but increased local service emplyment in Germany (Dauth et al., 2018)
- Impacts in Japan? Most advanced robot technology, Declining population

Overview


- Regional analysis based on 300 commuting zones (CZs)
- Heterogeneous robot penetration across CZs depending on initial industrial structure and heterogeneous robot penetration across industries
- Instrumented by German penetration index
- Robot penetration increased local employment as well as local population
- In total, robot penetration reduced the employment-population ratio

Variety of robots

- Cartesian robot
- SCARA robot
- Articulated robot
- Parallel robot
- Cylindrical robot

Robot

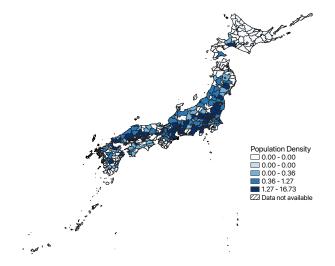

Figure: Articulated robot

Table: Per-thousand-worker Penetration of Robot, Articulated Robot, 2002-17

Industry	Penetration of Robot	
Transport machinery	19.033	
Chemical products	0.326	
Food / Beverage / Tobacco	0.275	
General machinery	-5.863	
Precision and optics	-7.481	
Non-ferrous metal	-12.253	

Figure: Density of automobile industry as of 2002

Construction of robot exposure

Robot growth in industry *i*:

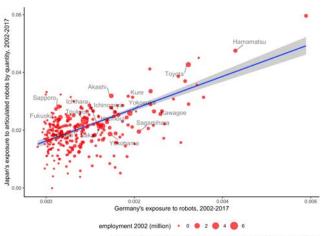
$$PR_{i,(2002,2017)}^{s} \equiv \frac{R_{i2017}^{s} - R_{i2002}^{s}}{L_{i2002}},$$
(1)

where $R_{i,t}^s$ is industry-*i*, structure-*s*, year-*t* stock of robot. **Robot exposure in CZ** *c*:

$$ER_{c,(2002,2017)}^{s} \equiv \sum_{i} l_{ci2002} PR_{i,(2002,2017)}^{s},$$
(2)

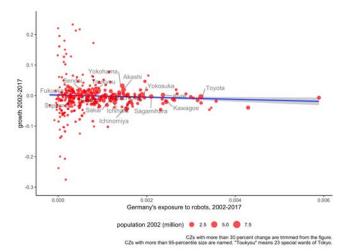
where $l_{ci2002} \equiv \frac{L_{ci2002}}{\sum_k L_{ck2002}}$ is the industry-*i* share of employment in CZ *c* and year 2002.

Empirical strategy

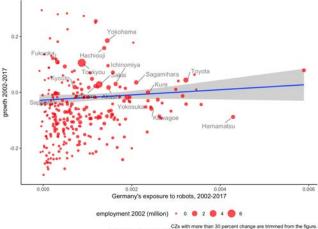

Estimation equation:

$$y_c^g = \alpha^{gs} + \beta^{gs} E R_c^s + X_c' \gamma^{gs} + \varepsilon_c^{gs}, \tag{3}$$

where y_c^g is one of CZ *c*-demographic group *g* outcome variables, X_c is the (column) vector of control variables of CZ *c*, and ε_c^{gs} is the error term. **Instrumental variable:**

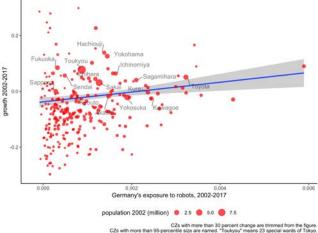

$$ER_{c,(t_0,t_1)}^{DEU} \equiv \sum_{i} l_{cit_{-1}} PR_{i,(t_0,t_1)}^{DEU},$$
(4)

First stage



CZs with more than 95-percentile size are named. "Toukyou" means 23 special wards of Tokyo.

Reduced form, employment to population ratio



Reduced form, employment growth rate

CZs with more than 95-percentile size are named. "Toukyou" means 23 special wards of Tokyo.

Reduced form, population growth rate

Table: IV First Stage and Reduced Form

	Dependent variable:				
	ER	$\Delta \frac{L}{P}$	g^L	g^P	
	(1)	(2)	(3)	(4)	
ER^{DEU}	0.220*** (0.012)	-0.234* (0.121)	1.289** (0.632)	1.731*** (0.523)	
Observations	302	302	302	302	
R^2	0.514	0.012	0.014	0.035	
Adjusted R^2	0.513	0.009	0.010	0.032	

*p<0.1; **p<0.05; ***p<0.05; ***p<0.01. See the main text for the definition of each dependent and independent variables. All regressions are weighted by base-year populations in each CZ.

Table: IV regressions

	Dependent variable:			
	$\Delta \frac{L}{P}$	g^L	g^P	
	(1)	(2)	(3)	
ER	-1.067^{*} (0.553)	5.868** (2.892)	7.883*** (2.418)	
Observations	302	302	302	
Notes: *p<0	.1; **p<0.05	5; ***p<0.01.	See the main	

Notes: *p<0.1; **p<0.05; ****p<0.01. See the main text for the definition of each dependent and independent variables. All regressions are weighted by base-year populations in each CZ. ER is instrumented by ER^{DEU} .

Tentative conclusion

- Articulated robot penetration affected different regions heterogeneously.
- Penetration of articulated robot decreased employment/population ratio.
- Penetration of articulated robot increased both employment and population.
- The impact on population dominated the impact on employment.
- Automation technology help local area to sustain employment and population.

- Acemoglu, Daron and Pascual Restrepo, "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Technical Report, National Bureau of Economic Research 2019.
- Dauth, Wolfgang, Sebastian Findeisen, Jens Suedekum, and Nicole Woessner, "Adjusting to Robots: Worker-Level Evidence," Technical Report Institute Working Paper 13 2018.
- Frey, Carl Benedikt and Michael A. Osborne, "The future of employment: How susceptible are jobs to computerisation?," *Technological Forecasting and Social Change*, 2017, 114 (C), 254–280.