

Artificial Intelligence and Economic Growth

P. Aghion, B. Jones, and C. Jones

ESRI Japan - July 2019

What are the implications of A.I. for economic growth?

- Build some growth models with A.I.
 - A.I. helps to make goods
 - A.I. helps to make ideas
- Implications
 - Long-run growth
 - Share of GDP paid to labor vs capital
 - Firms and organizations
- Singularity?

Two Main Themes

- A.I. modeled as a continuation of automation
 - Automation = replace labor in particular tasks with machines and algorithms
 - *Past:* textile looms, steam engines, electric power, computers
 - *Future:* driverless cars, paralegals, pathologists, maybe researchers, maybe everyone?
- A.I. may be limited by Baumol's cost disease
 - Baumol: growth constrained not by what we do well but rather by what is essential and yet hard to improve

Outline

- Basic model: automating tasks in production
- A.I. and the production of new ideas
- Singularity?
- Some facts

The Zeira 1998 Model

Simple Model of Automation (Zeira 1998)

• Production uses *n* tasks/goods:

$$Y = AX_1^{\alpha_1}X_2^{\alpha_2} \cdot \ldots \cdot X_n^{\alpha_n},$$

where $\sum_{i=1}^n \alpha_i = 1$ and
 $X_{it} = \begin{cases} L_{it} & \text{if not automated} \end{cases}$

Substituting gives

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

K_{it} if automated

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

- Comments:
 - $\circ \alpha$ reflects the *fraction* of tasks that are automated
 - $\circ~$ Embed in neoclassical growth model $\Rightarrow~$

$$g_y = \frac{g_A}{1-\alpha}$$
 where $y_t \equiv Y_t/L_t$

- Automation: $\uparrow \alpha$ raises both capital share and LR growth
 - Hard to reconcile with 20th century
 - Substantial automation but stable growth and capital shares

- Acemoglu and Restrepo (2017, 2018, 2019, 2020, ...)
 - Old tasks are gradually automated as new (labor) tasks are created
 - Fraction automated can then be steady
 - Rich framework, with endogenous innovation and automation, all cases worked out in great detail
- Peretto and Seater (2013), Hemous and Olson (2016), Agrawal, McHale, and Oettl (2017)

Automation and Baumol's Cost Disease

Baumol's Cost Disease and the Kaldor Facts

- Baumol: Agriculture and manufacturing have rapid growth and declining shares of GDP
 - ... but also rising automation
- Aggregate capital share could reflect a balance
 - Rises within agriculture and manufacturing
 - But falls as these sectors decline
- Maybe this is a general feature of the economy!
 - First agriculture, then manufacturing, then services

Production is CES in tasks, with EofS<1 (complements)

$$Y_t = A_t \left(\int_0^1 X_{it}^
ho \, di
ight)^{1/
ho}$$
 where $ho < 0$ (Baumol)

• Let β_t = fraction of tasks automated by date *t*:

$$Y_t = A_t \left[\beta_t \left(\frac{K_t}{\beta_t} \right)^{\rho} + (1 - \beta_t) \left(\frac{L}{1 - \beta_t} \right)^{\rho} \right]^{1/\rho}$$
$$\implies Y_t = A_t \left((B_t K_t)^{\rho} + (C_t L)^{\rho} \right)^{1/\rho}$$
where $B_t = \beta_t^{\frac{1}{\rho} - 1}$ and $C_t = (1 - \beta_t)^{\frac{1}{\rho} - 1}$

Note: increased automation ⇒ ↓ B_t and ↑ C_t since ρ < 0.
 (e.g. a given amount of capital is spread over more tasks.)

Factor Shares of Income

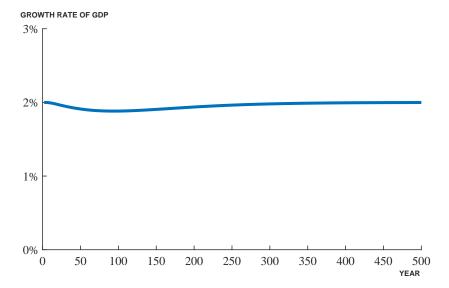
• Ratio of capital share to labor share:

$$\frac{\alpha_{K_t}}{\alpha_{L_t}} = \left(\frac{\beta_t}{1-\beta_t}\right)^{1-\rho} \left(\frac{K_t}{L_t}\right)^{\rho}$$

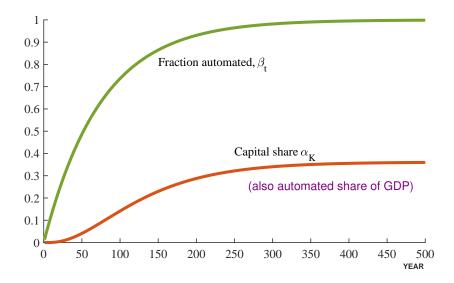
- Two offsetting effects ($\rho < 0$):
 - $\uparrow \beta_t$ raises the capital share
 - $\uparrow K_t/L_t$ lowers the capital share

If these balance, constant factor shares are possible

Automation and Asymptotic Balanced Growth


 Suppose a constant fraction of non-automated tasks become automated each period:

$$\dot{\beta}_t = \theta(1 - \beta_t)$$


Then $\beta_t \rightarrow 1$ and C_t grows at a constant rate!

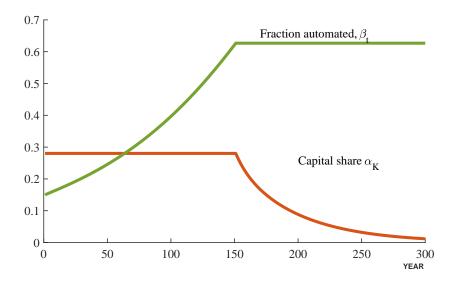
- With $Y_t = F(B_tK_t, C_tL_t)$, balanced growth as $t \to \infty$:
 - All tasks eventually become automated
 - Agr/Mfg shrink as a share of the economy...
 - Labor still gets 2/3 of GDP! Vanishing share of tasks, but all else is cheap (Baumol)

Simulation: Automation and Asymptotic Balanced Growth

Simulation: Capital Share and Automation Fraction

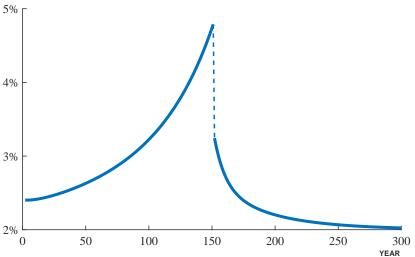
Constant Factor Shares?

- Consider *g*_{*A*} > 0 technical change beyond just automation
- Alternatively, factor shares can be constant if automation follows

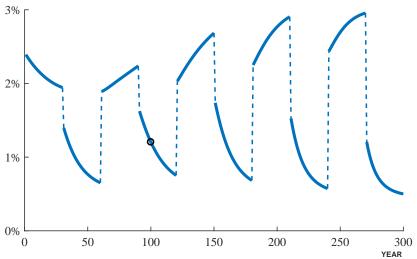

$$g_{\beta t} = (1 - \beta_t) \left(\frac{-\rho}{1 - \rho}\right) g_{kt},$$

- Knife-edge condition...
- Surprise: growth rates increase not decrease. Why? Requires

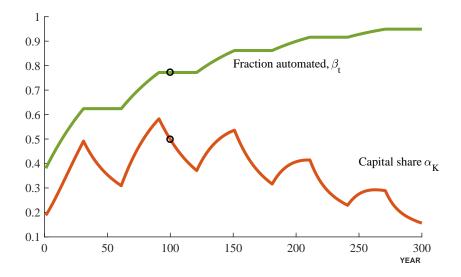
$$g_{Yt} = g_A + \beta_t g_{Kt}.$$


• $g_A = 0$ means zero growth. $g_A > 0$ means growth rises

Simulation: Constant Capital Share


Simulation: Constant Capital Share

GROWTH RATE OF GDP



Simulation: Switching regimes...

GROWTH RATE OF GDP

Simulation: Switching regimes...

A.I. and Ideas

Al in the Ideas Production Function

- Let production of goods and services be $Y_t = A_t L_t$
- Let idea production be:

$$\dot{A}_t = A_t^{\phi} \left(\int_0^1 X_{it}^{\rho} di \right)^{1/\rho}, \ \rho < 0$$

• Assume fraction β_t of tasks are automated by date *t*. Then:

$$\dot{A}_t = A_t^{\phi} F(B_t K_t, C_t S_t)$$

where

$$B_t \equiv \beta_t^{\frac{1-\rho}{\rho}}; C_t \equiv (1-\beta_t)^{\frac{1-\rho}{\rho}}$$

• This is like before...

Al in the Ideas Production Function

• Intuition: with $\rho < 0$ the scarce factor comes to dominate

$$F(B_tK_t, C_tS_t) = C_tS_tF\left(\frac{B_tK_t}{C_tS_t}, 1\right) \to C_tS_t$$

• So, with continuous automation

$$\dot{A}_t \to A_t^{\phi} C_t S_t$$

And asymptotic balanced growth path becomes

$$g_A = \frac{g_C + g_S}{1 - \phi}$$

• We get a "boost" from continued automation (g_C)

Can automation replace population growth?

- Maybe! Suppose *S* is constant, $g_S = 0$
 - Intuition: Fixed S is spread among exponentially-declining measure of tasks
 - So researchers per task is growing exponentially!
- However
 - This setup takes automation as exogenous and at "just the right rate"
 - What if automation is endogenized?
 - Is population growth required to drive automation?
 - o Could a smart/growing AI entirely replace humans?

Singularities

Singularities

- Now we become more radical and consider what happens when we go "all the way" and allow AI to take over all tasks.
- **Example 1:** Complete automation of goods and services production.

$$Y_t = A_t K_t$$

 \rightarrow Then growth rate can accelerate exponentially

$$g_Y = g_A + sA_t - \delta$$

we call this a "Type I" growth explosion

Complete automation in ideas production function

 $\dot{A}_t = K_t A_t^{\phi}$

Intuitively, this idea production function acts like

$$\dot{A}_t = A_t^{1+\phi}$$

Solution:

$$A_t = \left(\frac{1}{A_0^{-\phi} - \phi t}\right)^{1/\phi}$$

 Thus we can have a true singularity for φ > 0. A_t exceeds any finite value before date t^{*} = ¹/_{φA₀^φ}.

Singularities: Example 3 – Incomplete Automation

• Cobb-Douglas, α and β are fraction automated, S constant

 $\dot{K}_t = \bar{s}LA_t^{\sigma}K_t^{\alpha} - \delta K_t.$

$$\dot{A}_t = K_t^\beta S^\lambda A_t^\phi$$

• Standard endogenous growth requires $\gamma = 1$:

$$\gamma := \frac{\sigma}{1-\alpha} \cdot \frac{\beta}{1-\phi}.$$

- If $\gamma > 1$, then growth explodes!
 - Can occur without full automation

• Example:
$$\alpha = \beta = \phi = 1/2$$
 and $\sigma > 1/2$.

Objections to singularities

1 Automation limits (no $\beta_t \rightarrow 1$)

2 Search limits

$$\dot{A}_t = A_t^{1+\phi}$$

but $\phi < 0$ (e.g., fishing out, burden of knowledge...)

O Natural Laws

$$Y_t = \left(\int_0^1 (a_{it}Y_{it})^
ho
ight)^{1/
ho}$$
 where $ho < 0$

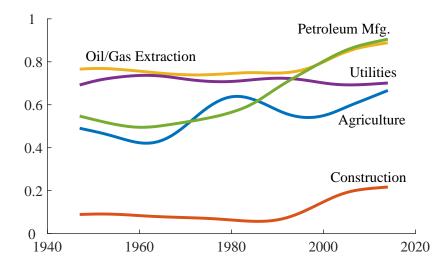
now can have $a_{it} \rightarrow \infty$ for many tasks but no singularity

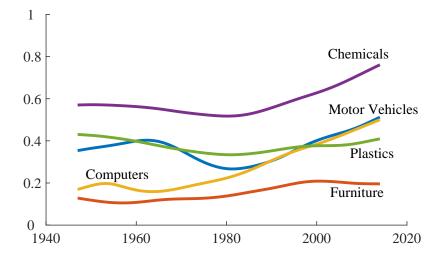
• *Baumol theme:* growth determined not by what we are good at, but by what is essential yet hard to improve

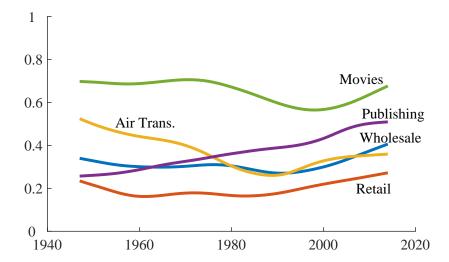
Final Thoughts

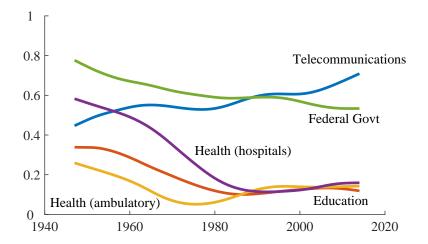
Conclusion: A.I. in the Production of Goods and Services

- Introduced Baumol's "cost disease" insight into Zeira's model of automation
 - Automation can act like labor augmenting technology (surprise!)
 - Can get balanced growth with a constant capital share well below 100%, even with nearly full automation

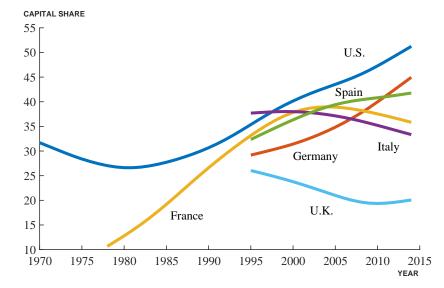

Conclusion: A.I. in the Ideas Production Function

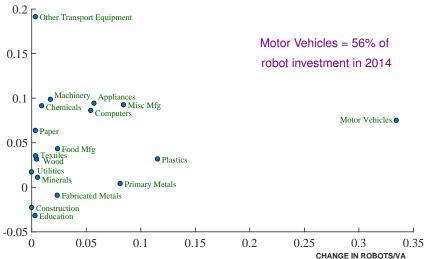

- Could A.I. obviate the role of population growth in generating exponential growth?
- Discussed possibility that A.I. could generate a singularity
 - Derived conditions under which the economy can achieve infinite income in finite time
- Discussed obstacles to such events
 - Automation limits, search limits, and/or natural laws (among others)


Extra Slides



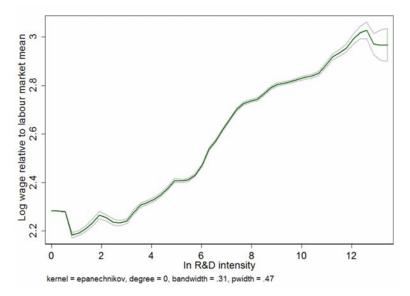
Some Facts

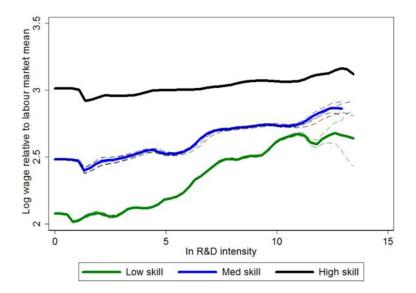




Capital Share of Income: Transportation Equipment

Adoption of Robots and Change in Capital Share


CHANGE IN CAPITAL SHARE


AI, Organizations, and Wage Inequality

- Usual story: robots replace low-skill labor, hence ↑ skill premium (e.g., Krusell et al. 2000)
- But solving future problems, incl. advancing AI, might be increasingly hard, suggesting ↑ complementarities across workers, ↑ teamwork, and changing firm boundaries (Garicano 2000, Jones 2009)
- Aghion et al. (2017) find evidence along these lines
 - outsouce higher fraction of low-skill workers
 - pay increased premium to low-skill workers kept

AI, Organizations, and Wage Inequality

AI, Skills, and Wage Inequality

